以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
总复习
二次函数
一、定义
二、图象特点
和性质
三、解析式的求法
返回主页
一般地,如果
y=ax2+bx+c(a,b,c
是常数,a≠0),那么,y
叫做x的二次函数。
返回主页
返回目录
一、定义
二、图象特点
和性质
三、解析式的求法
1.特殊的二次函数
y=ax2 (a≠0)
的图象特点和函数性质
返回主页
前进
一、定义
二、图象特点
和性质
三、解析式的求法
(1)是一条抛物线;
(2)对称轴是y轴;
(3)顶点在原点;
(4)开口方向:
a>0时,开口向上;
a<0时,开口向下.
(一) 图象特点:
前进
(1) a>0时,y轴左侧,函数值y随x的增大而减小 ; y轴右侧,函数值y随x的增大而增大 。
a<0时, y轴左侧,函数值y随x的增大而增大 ; y轴右侧,函数值y随x的增大而减小 。
(2) a>0时,ymin=0
a<0时,ymax=0
(二) 函数性质:
前进
2.一般二次函数
y=ax2+bx+c(a≠0)
的图象特点和函数性质
返回主页
前进
一、定义
二、图象特点
和性质
三、解析式的求法
(1)是一条抛物线;
(2)对称轴是:x=-
(3)顶点坐标是:(- , )
(4)开口方向:
a>0时,开口向上;
a<0时,开口向下.
(一) 图象特点:
前进
(1) a>0时,对称轴左侧(x<- ),函数值y随x的增大而减小 ;对称轴右侧(x>- ),函数值y随x的增大而增大 。
a<0时,对称轴左侧(x<- ),函数值y随x的增大而增大 ;对称轴右侧(x>- ),函数值y随x的增大而减小 。
(2) a>0时,ymin=
a<0时,ymax=
(二) 函数性质:
返回目录
y=ax2+bx+c
y=a(x-h)2+k
返回主页
一、定义
二、图象特点
和性质
三、解析式的求法
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0
c<0
(3)a、b确定对称轴 的位置:
ab>0
ab=0
ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0
Δ<0
x
y
0
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
x
y
0
•(0,c)
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
x
y
0
•(0,0)
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
x
y
0
•(0,c)
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
x
y
0
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
x
y
0
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
x
y
0
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
•(x1,0)
•(x2,0)
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
x
y
0
•(x,0)
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
(1)a确定抛物线的开口方向:
(2)c确定抛物线与y轴的交点位置:
(3)a、b确定对称轴 的位置:
(4)Δ确定抛物线与x轴的交点个数:
x
y
0
•
a>0
a<0
c>0
c=0
c<0
ab>0
ab=0
ab<0
Δ>0
Δ=0
Δ<0
返回主页
题型分析:
(一)抛物线与x轴、y轴的交点及所构成的面积
例1:填空:
(1)抛物线y=x2-3x+2与y轴的交点坐标是____________,与x轴的交点坐标是____________;
(2)抛物线y=-2x2+5x-3与y轴的交点坐标是____________,与x轴的交点坐标是____________.
(0,2)
(1,0)和(2,0)
(0,-3)
前进
例2:已知抛物线y=x2-2x-8,(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积。
前进
例3:在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为
(二)根据函数性质判定函数图象之间的位置关系
答案: B
前进
例4、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。
解:∵二次函数的最大值是2
∴抛物线的顶点纵坐标为2
又∵抛物线的顶点在直线y=x+1上
∴当y=2时,x=1 ∴顶点坐标为( 1 , 2)
∴设二次函数的解析式为y=a(x-1)2+2
又∵图象经过点(3,-6)
∴-6=a (3-1)2+2 ∴a=-2
∴二次函数的解析式为y=-2(x-1)2+2
即: y=-2x2+4x
(三)根据函数性质求函数解析式
前进
巩固练习:
1、填空:
(1)二次函数y=x2-x-6的图象顶点坐标是___________对称轴是_________。
(2)抛物线y=-2x2+4x与x轴的交点坐标是___________
(3)已知函数y= —x2-x-4,当函数值y随x的增大而减小时,x的取值范围是___________
(4)二次函数y=mx2-3x+2m-m2的图象经过原点,则m= ____。
1
2
(0,0)(2,0)
x<1
2
2.选择
抛物线y=x2-4x+3的对称轴是_____________.
A 直线x=1 B直线x= -1 C 直线x=2 D直线x= -2
(2)抛物线y=3x2-1的________________
A 开口向上,有最高点 B 开口向上,有最低点
C 开口向下,有最高点 D 开口向下,有最低点
(3)若y=ax2+bx+c(a 0)与X轴交于点A(2,0), B(4,0),
则对称轴是_______
A 直线x=2 B直线x=4 C 直线x=3 D直线x= -3
(4)若y=ax2+bx+c(a 0)过点A(2,m), B(4,m),
则对称轴是_______
A 直线x=3 B 直线x=4 C 直线x= -3 D直线x=2
c
B
C
A
能力训练
1、 二次函数的图象如图所示,则在下列各不等式
中成立的个数是____________
1
-1
0
x
y
①abc<0
②a+b+c < 0
③a+c > b
④2a+b=0
⑤Δ=b-4ac > 0
2、解答题:
已知二次函数的图象顶点坐标为(-2,3),且图象过点 (-3,-2),求此二次函数的解析式;
3、已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8)。
(1)求这个二次函数的解析式;
(2)写出它的对称轴和顶点坐标。
再见