免费下载必修2数学原创《2.3.4平面与平面垂直的性质》课件ppt
以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
平面与平面垂直的性质
复习回顾
面面垂直的判定方法:
1、定义法:
2、判定定理:
(线面垂直面面垂直)
探究新知
教室的黑板所在平面与地面是什么关系?你能在黑板上画一条直线与地面垂直吗?
性质定理
猜想:
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
已知:平面 ⊥平面β,平面 ∩平面β=AB,
求证:直线CD⊥平面β。
CD ⊥ AB, 且CD ∩ AB =D。
CD 平面 ,
E
β
结论
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
平面与平面垂直的性质定理:
定理剖析
面面垂直线面垂直;
(线是一个平面内垂直于两平面交线的一条直线)
A
B
2)为判定和作出线面垂直提供依据。
概念巩固
判断下列命题的真假
1.若α⊥β,那么α内的所有直线都垂直于β。
2.两平面互相垂直,分别在这两平面内的两直线互相垂直。
3.两平面互相垂直,分别在两平面内且互相垂直的两直线一定分别与另一个平面垂直。
4.两平面互相垂直,过一平面内的任一点在该平面内作交线的垂线,则此直线必垂直与另一个平面。
×
×
×
√
关键点:
①线在平面内;
②线垂直于交线。
巩固深化、发展思维
思考:平面⊥平面β,
点P在平面内,
过点P作平面β的垂线PC,
直线PC与平面具有什么位置关系?
P
C
A
B
D
已知:⊥β,∩β=AB, P∈ ,PC ⊥ β。
猜想:直线PC在平面内
已知:⊥β,∩β=AB, P∈,PC ⊥ β。
说明:(1)此题运用了“同一法”证明.
(2)这个结论是面面垂直的另一个性质,它的作用是判定直线在平面内。
如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内。
文字语言:
应用巩固
猜想:
垂直于同一平面的两平面的交线垂直于这个平面。
已知:α⊥γ,β⊥γ,α∩β=a。
求证:a⊥γ.
P
b
.
P
M
N
.
小 结
2、空间垂直关系有哪些?如何实现垂直关系的相互转化?指出下图中空间垂直关系转化的依据.
线面垂直
线线垂直
面面垂直
1、这节课我们学习了哪些内容,我们是如何得到这些结论的?
3、平面 ⊥平面β,要过平面 内一点引平面β的垂线,
只需过这一点在平面 内作交线的垂线。
课本P82:习题B组第3题
作业布置: