最新人教版_九年级数学22.3_实际问题与二次函数_第3课时探究3
以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
22.3 实际问题与二次函数
第3课时 拱型桥问题
1.会建立直角坐标系解决实际问题;
2.会解决与桥洞水面宽度有关的类似问题.
探究3:
我们来比较一下
(0,0)
(4,0)
(2,2)
(-2,-2)
(2,-2)
(0,0)
(-2,0)
(2,0)
(0,2)
(-4,0)
(0,0)
(-2,2)
谁最合适
y
y
y
y
o
o
o
o
x
x
x
x
解法一: 如图所示以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系.
∴可设这条抛物线所表示的二次函数的解析式为:
当拱桥离水面2m时,水面宽4m
即抛物线过点(2,-2)
∴这条抛物线所表示的二次函数为:
当水面下降1m时,水面的纵坐标为y=-3,这时有:
∴当水面下降1m时,水面宽度增加了
解法二: 如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.
∴可设这条抛物线所表示的
二次函数的解析式为:
此时,抛物线的顶点为(0,2)
当拱桥离水面2m时,水面宽4m
即:抛物线过点(2,0)
∴这条抛物线所表示的二次函数为:
当水面下降1m时,水面的纵坐标为y=-1,这时有:
∴当水面下降1m时,水面宽度增加了
解法三:如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.
∴可设这条抛物线所表示的二次函数的解析式为:
∵抛物线过点(0,0)
∴这条抛物线所表示的二次函数为:
此时,抛物线的顶点为(2,2)
当水面下降1m时,水面的纵坐标为y=-1,这时有:
∴当水面下降1m时,水面宽度增加了
∴这时水面的宽度为:
1.理解问题;
回顾上一节“最大利润”和本节“桥梁建筑”解决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴交流.
2.分析问题中的变量和常量,以及它们之间的关系
3.用数学的方式表示出它们之间的关系;
4.做数学求解;
5.检验结果的合理性
“二次函数应用”的思路
x
练习:
如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用 表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?
(1)卡车可以通过.
提示:当x=±1时,y =3.75, 3.75+2>4.
(2)卡车可以通过.
提示:当x=±2时,y =3, 3+2>4.
练习:
: 某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.
练习
解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.
∵AB=4
∴A(-2,0) B(2,0)
∵OC=4.4
∴C(0,4.4)
设抛物线所表示的二次函数为
∵抛物线过A(-2,0)
∴抛物线所表示的二次函数为
∴汽车能顺利经过大门.
抽象
转化
数学问题
运用
数学知识
问题的解决
解题步骤:
1.分析题意,把实际问题转化为数学问题,画出图形.
2.根据已知条件建立适当的平面直角坐标系.
3.选用适当的解析式求解.
4.根据二次函数的解析式解决具体的实际问题.
实际问题