以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
最大面积是多少
教学目标
(一)教学知识点
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.
(二)能力训练要求
1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.
2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.
(三)情感与价值观要求
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.
2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.
3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.
教学重点
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.
教学难点
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题.
教学方法
教师指导学生自学法.
教具准备
投影片四张
第一张:(记作§2.7A)
第二张:(记作§2.7B)
第三张:(记作§2.7C)
第四张:(记作§2.7D)
教学过程
Ⅰ.创设问题情境,引入新课
[师]上节课我们利用二次函数解决了最大利润问题,知道了求最大利润就是求函数的最大值,实际上就是用二次函数来解决实际问题.解决这类问题的关键是要读懂题目,明确要解决的是什么,分析问题中各个量之间的关系,把问题表示为数学的形式,在此基础上,利用我们所学过的数学知识,就可以一步步地得到问题的解.
本节课我们将继续利用二次函数解决最大面积问题.
Ⅱ.新课讲解
一、例题讲解
投影片:(§2.7A)
如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上.
(1)设长方形的一边AB=x m,那么AD边的长度如何表示?
(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?
[师]分析:(1)要求AD边的长度,即求BC边的长度,而BC是△EBC中的一边,因此可以用三角形相似求出BC.由△EBC∽△EAF,得即.所以AD=BC=(40-x).
(2)要求面积y的最大值,即求函数y=AB·AD=x·(40-x)的最大值,就转化为数学问题了.
下面请大家讨论写出步骤.
[生](1)∵BC∥AD,
∴△EBC∽△EAF.∴.
又AB=x,BE=40-x,
∴.∴BC=(40-x).
∴AD=BC=(40-x)=30-x.
(2)y=AB·AD=x(30-x)=-x2+30x
=-(x2-40x+400-400)
=-(x2-40x+400)+300
=-(x-20)2+300.
当x=20时,y最大=300.
即当x取20m时,y的值最大,最大值是300m2.
[师]很好.刚才我们先进行了分析,要求面积就需要求矩形的两条边,把这两条边分别用含x的代数式表示出来,代入面积公式就能转化为数学问题了,大家觉得用数学知识解决实际问题很难吗?
[生]不很难.
[师]下面我们换一个条件,看看大家能否解决.设AD边的长为x m,则问题会怎样呢?与同伴交流.
[生]要求面积需求AB的边长,而AB=DC,所以需要求DC的长度,而DC是△FDC中的一边,所以可以利用三角形相似来求.
解:∵DC∥AB,
∴△FDC∽△FAE.
∴.
∵AD=x,FD=30-x.
∴.
∴DC=(30-x).
∴AB=DC=(30-x).
y=AB·AD=x·(30-x)
=-x2+40x
=-(x2-30x+225-225)
=-(x-15)2+300.
当x=15时,y最大=300.
即当AD的长为15m时,长方形的面积最大,最大面积是300m2.
二、做一做
投影片:(§2.7B)
某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
[师]通过刚才的练习,这个问题自己来解决好吗?
[生]可以.
分析:x为半圆的半径,也是矩形的较长边,因此x与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy+x2最大,而由于4y+4x+3x+πx=7x+4y+πx=15,所以y=.面积S=πx2+2xy=πx2+2x·=πx2+=-3.5x2+7.5x,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.
解:∵7x+4y+πx=15,
∴y=.
设窗户的面积是S(m2),则
S=πx2+2xy
=πx2+2x·
=πx2+
=-3.5x2+7.5x
=-3.5(x2-x)
=-3.5(x-)2+.
∴当x=≈1.07时,
S最大=≈4.02.
即当x≈1.07m时,S最大≈4.02m2,此时,窗户通过的光线最多.
[师]大家做得非常棒.
三、议一议
[师]我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.
[生]首先是理解题目,然后是分析已知量与未知量,转化为数学问题.
[师]看来大家确实学会了用数学知识解决实际问题,基本思想如下:
投影片:(§2.7C)
解决此类问题的基本思路是:
(1)理解问题;
(2)分析问题中的变量和常量以及它们之间的关系;
(3)用数学的方式表示它们之间的关系;
(4)做函数求解;
(5)检验结果的合理性,拓展等.
在总结思路之前,大家已经做得相当出色了,相信以后会更上一层楼的.
Ⅲ.课堂练习
投影片:(§2.7D)
1.一养鸡专业户计划用116m长的竹篱笆靠墙(如下图)围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?
解:设AB长为x m,则BC长为(116-2x)m,长方形面积为S m2,根据题意得
S=x(116-2x)=-2x2+116x=-2(x2-58x+292-292)=-2(x-29)2+1682.
当x=29时,S有最大值1682,这时116-2x=58.
即设计成长为58m,宽为29m的长方形时,能使围成的长方形鸡舍的面积最大,最大面积为1682m2.
Ⅳ.课时小结
本节课我们进一步学习了用二次函数知识解决最大面积问题,增强了应用意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学模型思想和数学的应用价值.
Ⅴ.课后作业
习题2.8
Ⅵ.活动与探究
已知矩形的长大于宽的2倍,周长为12,从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形的一边所成的角的正切值等于.设梯形的面积为S,梯形中较短的底边长为x,试写出梯形面积关于x的函数关系式,并指出自变量x的取值范围.
分析:因为射线与矩形一边所成的角的正切值等于,但没有说明射线与矩形的哪一边所成角的正切值,故本题应考虑两种情况,如下图:
板书设计
§2.7 最大面积是多少
一、1.例题讲解(投影片§2.7A)
2.做一做(投影片§2.7B)
3.议一议(投影片§2.7C)
二、课堂练习(投影片§2.7D)
三、课时小结
四、课后作业