登录 / 注册
首页>人教版初中数学九年级上册>21.2 解一元二次方程
  • 资料信息
  • 科目: 

    人教版初中数学九年级上册 - 21.2 解一元二次方程

  • 格式:  DOC
  • 大小:  116K    4页
  • 时间:  2017-08

21.2 解一元二次方程 教学设计2

以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
22.2.1配方法解一元二次方程

教学内容
间接即通过变形运用开平方法降次解方程.
教学目标
(一)教学知识点
1、通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤。
2、理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题。
(二)能力训练要求
1、理解配方法;知道“配方”是一种常用的数学方法。
2、会用配方法解数字系数的一元二次方程。
3、培养学生运用变形的思维方式来解得方程的解,培养学生的逻辑思维能力。体会转化的数学思想。
(三)情感与价值观要求
1、应用的意识和能力,培养学生自主学习的能力。
2、培养学生探索创新的科学精神,初步感受方程的魅力。
重难点关键点
1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
教学过程
一、复习引入
(学生活动)请同学们解下列方程
(1)你能解哪些一元二次方程?
(2)你会解下列方程吗?你是怎么做的?
 
老师点评:
上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
(3)解方程的困难在哪里?你能将方程转化为上面方程的形式吗?

二、探索新知
问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.
大意是说:一群猴子分成两队,一队猴子数是猴子总数的的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?
问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?

老师点评:问题1:设总共有x只猴子,根据题意,得:
x=(x)2+12
整理得:x2-64x+768=0
问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500
整理,得:x2-36x+70=0
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2-64x+768=0 移项→ x=2-64x=-768
两边加()2使左边配成x2+2bx+b2的形式 → x2-64x+322=-768+1024
左边写成平方形式 → (x-32)2=256 降次→x-32=±16 即 x-32=16或x-32=-16
解一次方程→x1=48,x2=16
可以验证:x1=48,x2=16都是方程的根,所以共有16只或48只猴子.
学生活动:
例1.解下列关于x的方程
(1) (2)2x2-4x-1=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:(1)x2+12x=15 x2-2x+62=15+36 (x+6)2=51 x+6=±
X+6=,x+61=-
x1=-6,x2=--6
可以,验证x1=-6,x2=--6都是x2+2x-35=0的两根.

(2)x2-2x-=0 x2-2x=
x2-2x+12=+1 (x-1)2=
x-1=±即x-1=,x-1=-
x1=1+,x2=1-
可以验证:x1=1+,x2=1-都是方程的根.
三、巩固练习
教材P38 讨论改为课堂练习,并说明理由.
教材P39 练习1 2.(1)、(2).
四、应用拓展
例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半.

分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知列出等式.
解:设x秒后△PCQ的面积为Rt△ACB面积的一半.
根据题意,得:(8-x)(6-x)=××8×6
整理,得:x2-14x+24=0
(x-7)2=25即x1=12,x2=2
x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.
所以2秒后△PCQ的面积为Rt△ACB面积的一半.
五、归纳小结
本节课应掌握:
左边不含有x的完全平方形式,左边是非负数的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
六、布置作业
1.教材P45 复习巩固2.
2.选用作业设计.
(一)、选择题
1.将二次三项式x2-4x+1配方后得( ).
A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3
2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).
A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1
C.x2+8x+42=1 D.x2-4x+4=-11
3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于( ).
A.1 B.-1 C.1或9 D.-1或9
(二)、填空题
1.方程x2+4x-5=0的解是________.
2.代数式的值为0,则x的值为________.
3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.
(三)、综合提高题
1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.
2.如果x2-4x+y2+6y++13=0,求(xy)z的值.
3.新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?
七、教学反思