登录 / 注册
首页>人教版初中数学九年级上册>22.3 实际问题与二次函数
  • 资料信息
  • 科目: 

    人教版初中数学九年级上册 - 22.3 实际问题与二次函数

  • 格式:  PPT
  • 大小:  633K    14张
  • 时间:  2017-08

22.3 实际问题与二次函数 课件7

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
22.3 实际问题与二次函数 课件7
x
y
0
实际问题与二次函数(三)
y
x
o
活动一 创设情境 问题引导
问题一:有一桥洞为抛物线形的拱桥,这个桥洞的最大高度为16cm,跨度40cm,现在把它的图形放在坐标系中,如图所示,若跨度中心点M左右5m处各垂直竖立一根铁柱支撑拱桥,则铁柱有多高?
问题二:如图是抛物线形拱桥,当水面在L 时,拱桥离水面2米,水面宽4米。水面下降1米,水
面宽度增加多少米?
活动二 自学展示
思考:
一.①从题目自身条件,你能联想到用什么数学知识来解决?
②在此基础上我们需要建立______,即可求出这条抛物线表示的函数关系式。
二.你有几种建系的方法?

活动二 自学展示
活动二 自学展示
解一
解二
解三
继续
活动三 合作探究 反馈交流
解一
∴可设这条抛物线所表示的二次函数的解析式为:
当拱桥离水面2m时,水面宽4m
即抛物线过点(2,-2)
∴这条抛物线所表示的二次函数为:
当水面下降1m时,水面的纵坐标为y=-3,这时有:
返回
解二
如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.
当水面下降1m时,水面的纵坐标为y=-1,这时有:
此时,抛物线的顶点为(0,2)
返回
解三
如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.
返回
学.科.网
例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.
活动四 当堂训练 拓展应用
解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.
∵AB=4
∴A(-2,0) B(2,0)
∵OC=4.4
∴C(0,4.4)
设抛物线所表示的二次函数为
∵抛物线过A(-2,0)
∴抛物线所表示的二次函数为
∴汽车能顺利经过大门.
活动五 课堂小结
㈠生活当中的拱桥、喷出的水柱、投篮时篮 球的运动路线等等都成抛物线形,因此我们可以用二次函数的知识来解决此类相关问题。
㈡解决此类抛物线实际问题的一般步骤:
①建立适当的直角坐标系 。
②求抛物线的解 析式 。
③ 根据函数解析式和已知量求相关的量。
㈢一定要注意适当建“系”,方便解题。
在本节课有什么收获?
2.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9 m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m. ①问此球能否投中?
1.有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿底部宽AB为4m,高OC为3.2m;集装箱的宽与车的宽相同都是2.4m;集装箱顶部离地面2.1m。该车能通过隧道吗?请说明理由.
(选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?
课后练习
学.科.网