以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
2 . 二次函数y=ax2+bx+c的图象是一条 ,它的对称
轴是 ,顶点坐标是 . 当a>0时,抛
物线开口向 ,有最 点,函数有最 值,是 ;当
a<0时,抛物线开口向 ,有最 点,函数有最 值,
是 。
抛物线
上
小
下
大
高
低
1. 二次函数y=a(x-h)2+k的图象是一条 ,它的对称轴是 ,顶点坐标是 .
抛物线
直线x=h
(h,k)
基础扫描
3. 二次函数y=2(x-3)2+5的对称轴是 ,顶点
坐标是 。当x= 时,y的最 值是 。
4. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点
坐标是 。当x= 时,函数有最 值,是 。
5.二次函数y=2x2-8x+9的对称轴是 ,顶点
坐标是 .当x= 时,函数有最 值,是 。
直线x=3
(3 ,5)
3
小
5
直线x=-4
(-4 ,-1)
-4
大
-1
直线x=2
(2 ,1)
2
小
1
基础扫描
在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。
如果你去买商品,你会选买哪一家呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?
问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?
6000
(20+x)
(300-10x)
(20+x)( 300-10x)
(20+x)( 300-10x) =6090
自主探究
分析:没调价之前商场一周的利润为 元;
设销售单价上调了x元,那么每件商品的利润
可表示为 元,每周的销售量可表示为
件,一周的利润可表示为
元,要想获得6090元利润可列方程 。
已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?
若设定价每件x元,那么每件商品的利润可表示为 元,每周的销售量可表示
为 件,一周的利润可表示
为 元,要想获得6090元利润可列方程 .
(x-40)
[300-10(x-60) ]
(x-40)[300-10(x-60)]
(x-40)[300-10(x-60)]=6090
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?
解:设售价提高x元时,半月内获得的利润为y元.则
y=(x+30-20)(400-20x)
=-20x2+200x+4000
=-20(x-5)2+4500
∴当x=5时,y最大 =4500
答:当售价提高5元时,半月内可获最大利润4500元
我来当老板
巩固练习
问题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?
补充例题
问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
问题4.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
解:设每件涨价为x元时获得的总利润为y元.
y =(60-40+x)(300-10x)
=(20+x)(300-10x)
=-10x2+100x+6000
=-10(x2-10x ) +6000
=-10[(x-5)2-25 ]+6000
=-10(x-5)2+6250
当x=5时,y的最大值是6250.
定价:60+5=65(元)
(0≤x≤30)
怎样确定x的取值范围
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x)
=(20-x)(300+20x)
=-20x2+100x+6000
=-20(x2-5x-300)
=-20(x-2.5)2+6125 (0≤x≤20)
所以定价为60-2.5=57.5时利润最大,最大值为6125元.
答:综合以上两种情况,定价为65元时可
获得最大利润为6250元.
怎样确定x的取值范围
反思感悟
通过本节课的学习,我的收获是?
课堂寄语
二次函数是一类最优化问题的数学模型,能指导我们解决生活中的实际问题,同学们,认真学习数学吧,因为数学来源于生活,更能优化我们的生活。
实际问题与二次函数(2)
--图形面积问题
问题导学
计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道,叫做磁道,如图,现有一张半径为45mm的磁盘.
(3)如果各磁道的存储单元数目与最内磁道相同.最内磁道的半径r是多少时,磁盘的存储量最大?
(1)磁盘最内磁道的半径为r mm,其上每0.015mm的弧长为1个存储单元,这条磁道有多少个存储单元?
(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外圆周不是磁道,这张磁盘最多有多少条磁道?
(2)由于磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外圆不是磁道,各磁道分布在磁盘上内径为r外径为45的圆环区域,所以这张磁盘最多有 条磁道.
(3)当各磁道的存储单元数目与最内磁道相同时,磁盘每面存储量=每条磁道的存储单元数×磁道数,设磁盘每面存储量为y,则
(1)最内磁道的周长为2πr mm,它上面的存储单元的个数不超过
分析
根据上面这个函数式,你能得出当r为何值时磁盘的存储量最大吗?
当
mm
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
例题1
例题2 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
解:
(1) ∵ AB为x米、篱笆长为24米
∴ 花圃宽为(24-4x)米
(3) ∵墙的可用长度为8米
∴ S=x(24-4x)
=-4x2+24 x (0∴当x=4cm时,S最大值=32 平方米
∴ 0<24-4x ≤8 4≤x<6
用二次函数的知识解决图形面积等问题的一般步骤:
把实际问题转化为数学问题
二次函数
问题求解
找出实际问题的答案
及
时
总
结
实际问题与二次函数 (3)
解一
解二
解三
继续
解一:
∴可设这条抛物线所表示的二次函数的解析式为:
当拱桥离水面2m时,水面宽4m
即抛物线过点(2,-2)
∴这条抛物线所表示的二次函数为:
当水面下降1m时,水面的纵坐标为y=-3,这时有:
返回
解二:
如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.
当水面下降1m时,水面的纵坐标为y=-1,这时有:
此时,抛物线的顶点为(0,2)
返回
解三:
如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.
返回
对于抛物线的实际问题,我们可以建立适当的平面直角坐标系,从而求出抛物线的解析式,然后利用二次函数的有关知识来解决。
1.建立适当的平面
直角坐标系。
2.设出相应的函数
解析式,并求出
解析式。
3.求出实际问题的
答案。
实际问题
数学问题
转
化
例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.
解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.
∵AB=4
∴A(-2,0) B(2,0)
∵OC=4.4
∴C(0,4.4)
设抛物线所表示的二次函数为
∵抛物线过A(-2,0)
∴抛物线所表示的二次函数为
∴汽车能顺利经过大门.
一场篮球赛中,小明跳起投篮,已知球出手时离地面高 米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。
问此球能否投中?
3米
8米
4米
4米
0
8
(4,4)
∵篮圈中心距离地面3米
∴此球不能投中
如图,建立平面 直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:
3