登录 / 注册
首页>人教版高中数学必修3>2.1.3分层抽样

免费下载高中数学必修3《2.1.3分层抽样》课件PPT

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
免费下载高中数学必修3《2.1.3分层抽样》课件PPT
分层抽样
一、复习回顾:
1、简单随机抽样的概念:
2、简单随机抽样的特点:
3、简单随机抽样的常用方法:
③机会均等抽样.
①不放回抽样;
②逐个进行抽取;
①抽签法;
②随机数表法.
设一个总体含有有限个个体,并记其个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的机会相等,就称这样的抽样为简单随机抽样.
二、基础训练:
2.欲从本班77名学生中随机抽取7名学生参
加数学的基本知识竞赛,试用随机表法确定这7名
学生.
1.中央电视台要从春节联欢晚会的60名热心观众中随机抽出4名幸运观众,试用抽签法为其设计产生这4名幸运观众的过程.
抽签法——编号、标签、搅拌、抽取,关键是
“搅拌”后的随机性;
随机数表法——编号、选数、取号、抽取,其中
取号的方向具有任意性.
评点:
3、某校有学生1200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本将如何获得最好?
用系统抽样法如何抽取?简述抽样过程.
解:适宜选用系统抽样,抽样过程如下:
⑴随机地将这1200名学生编号为1,2,3,…,1200.
⑵将总体按编号顺序均分成50部分,每部分包括24个个体.
⑶在第一部分的个体编号1,2,3,…,24中,利用简单随机抽样抽取一个号码,比如是18.
⑷以18为起始号码,每间隔24抽取一个号码,这样得到一个容量为50的样本:18,42,66,…,982,1002
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
你认为哪些因素影响学生视力?抽样要考虑哪些因素?
一、分层抽样的定义。
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。
应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。
二、分层抽样的步骤:
(1)按某种特征将总体分成互不相交的层
(2)按比例k=n/N确定每层抽取个体的个数(n/N)*Ni个。
(3)各层分别按简单随机抽样的方法抽取。
(4)综合每层抽样,组成样本。
练习:分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )
A、每层等可能抽样
B、每层不等可能抽样
C、所有层按同一抽样比等可能抽样
注意事项:
1.分层抽样法适用于总体中个体差异明显的抽样;

2.分层是按总体中个体的明显差异进行分类;

3.分层抽样是按各层中含个体在总体中所占的比例,确定层抽样的个体个数进行随机抽样.
例1、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )
A.15,5,25 B.15,15,15
C.10,5,30 D15,10,20
例2:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程。
解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:
(1)将3万人分为5层,其中一个乡镇为一层。
(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。
300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60 人。
(3)将300人组到一起,即得到一个样本。
例3、一个单位的职工有500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人。为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?
分析:这总体具有某些特征,它可以分成几个不同的部分:不到35岁;35~49岁;50岁以上,把每一部分称为一个层,因此该总体可以分为3个层。由于抽取的样本为100,所以必须确定每一层的比例,在每一个层中实行简单随机抽样。
解:抽取人数与职工总数的比是100:500=1:5,则各年龄段(层)的职工人数依次是125:280:95=25:56:19,然后分别在各年龄段(层)运用简单随机抽样方法抽取。

答:在分层抽样时,不到35岁、35~49岁、50岁以上的三个年龄段分别抽取25人、56人和19人。
比较简单随机抽样、系统抽样、分层抽样的优点、缺点及适用范围
练习1. 2. 3
课堂练习
1、某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是 ( )
A.简单随机抽样 B.系统抽样 C.分层抽样
D.先从老人中剔除1人,然后再分层抽样
2、某校有500名学生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为 人,A型血应抽取的人数为 人,B型血应抽取的人数为 人,AB型血应抽取的人数为 人。
1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:
(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,面层之间的样本差异要大,且互不重叠。
(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。
(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样。
2、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法。