以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
一.复习引入
必然事件:在一定条件下必然发生的事件.
不可能事件:在一定条件下不可能发生的事件.
随机事件:在一定条件下可能发生也可能不发生的事件.
概率的定义:
事件A发生的频率m/n接近于某个常数,这时就把这个常数叫做事件A的概率,记作P(A).
0≤P(A) ≤1.
必然事件的概率是1,不可能事件的概率是0.
1、盒中有3个黄球,2个白球,1个红球,每个球除颜色外都相同,从中任意摸出一球,
则P(摸到白球)=________,
P(摸到黑球)=________,
P(摸到黄球)=________,
P(摸到红球)=________。
2、柜子里有20双鞋,取出左脚穿的一只鞋的概率为_________。
3、投掷一枚质地均匀的骰子,点数小于5的概率为_________。
4、一副扑克牌,任意抽取1张,抽到黑桃8的概率是_________。
基
础
训
练
解:
在甲袋中,P(取出黑球)=
=
在乙袋中,P(取出黑球)=
=
>
所以,选乙袋成功的机会大。
20红,8黑
甲袋
20红,15黑,10白
乙袋
球除了颜色以外没有任何区别。两袋中的球都搅匀。蒙上眼睛从口袋中取一只球,如果你想取出1只黑球,你选哪个口袋成功的机会大呢?
等可能性事件
问题1.掷一枚硬币,落地后会出现几种结果?
。正反面向上2种可能性相等
问题2.抛掷一个骰子,它落地时向上的点数有几种可能?
6种等可能的结果
问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽取一根,抽出的签上的标号有几种可能?
5种等可能的结果。
一.复习引入
等可能性事件
等可能性事件的两种特征:
1.出现的结果有限多个;
2.各结果发生的可能性相等;
等可能性事件的概率可以用列举法而求得。
列举法就是把要数的对象列举出来分析求解的方法.
二.进入新课
25.2用列举法求概率第1课时
如图:计算机扫雷游戏,在9×9个小方格中,随机埋藏着10个地雷,每个小方格只有1个地雷,,小王开始随机踩一个小方格,标号为3,在3的周围的正方形中有3个地雷,我们把这个区域记为A区,A区外记为B区,,下一步小王应该踩在A区还是B区?
由于3/8大于7/72,
所以第二步应踩B区
解:A区有8格3个雷,
遇雷的概率为3/8,
B区有9×9-9=72个小方格,
还有10-3=7个地雷,
遇到地雷的概率为7/72,
例1
1.(2010北京)从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是( )
(A) (B) (C) (D)
2.(2010四川南充)甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是( )(A)从甲箱摸到黑球的概率较大(B)从乙箱摸到黑球的概率较大(C)从甲、乙两箱摸到黑球的概率相等(D)无法比较从甲、乙两箱摸到黑球的概率
走进中考
B
B
掷两枚硬币,求下列事件的概率:
(1)两枚硬币正面全部朝上
(2)两枚硬币全部反面朝上
(3)一枚硬币正面朝上,一枚硬币反面朝上
解:我们把掷两枚硬币所能产生的结果全部列举出来,它们是:正正、正反、反正、反反。所有的结果共有4个,并且这四个结果出现的可能性相等。
例2
(1)所有的结果中,满足两枚硬币全部正面朝上(记为事件A)的结果只有一个,即“正正”
所以 P(A)=
(2)所有的结果中,满足两枚硬币全部反面朝上(记为事件B)的结果只有一个,即“反反”
所以 P(B)=
(3)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记为事件C)的结果共有2个,即“正反”“反正”
所以 P(C)= =
练习:
袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出一个小球后放回,再随机摸出一个。求下列事件的概率:
(1)第一次摸到红球,第二次摸到绿球
(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球。
红红 红绿 绿红 绿绿
1.(湖北荆州)屏幕上有四张卡片,卡片上分别有大写的英文字母“A,Z,E,X”,现已将字母隐藏.只要用手指触摸其中一张,上面的字母就会显现出来.某同学任意触摸其中2张,上面显现的英文字母都是中心对称图形的概率是 .
2.(湖南株洲)从1,2,3,…,,20这二十个整数中任意取一个数,这个数是5的倍数的概率是 .
3.(湖南益阳)有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .
三.随堂练习
走 进 中 考
1/6
1/5
1/3
4.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从下图的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是_________.
5.(哈尔滨)一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个红球的概率是( ).
(A) (B) (C) (D)
6.(浙江义乌)小明打算暑假里的某天到上海世博会一日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个馆, 下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个馆游玩.则小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概率是( )
A. B. C. D.
D
A
7. 有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08"和“北京”的字块,如果婴儿能够排成"2008北京”或者“北京2008".则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是___________.
8.有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为( )。
9.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.
(1)共有多少种不同的结果?
(2)摸出2个黑球有多种不同的结果?
(3)摸出两个黑球的概率是多少?
7/50
10.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B.C.D三人随机坐到其他三个座位上.则A与B不相邻而坐的概率为___;
(一)等可能性事件的两个特征:
1.出现的结果有限多个;2.各结果发生的可能性相等;
(二)列举法求概率.
1.有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.
2.利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图(下课时将学习)等.
四.课堂小结
求概率的步骤:
(1)列举出一次试验中的所有结果(n个);
(2)找出其中事件A发生的结果(m个);
(3)运用公式求事件A的概率: