以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
23.1 图形的旋转(1)
第一课时
教学内容
1.什么叫旋转?旋转中心?旋转角?
2.什么叫旋转的对应点?
教学目标
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
重难点、关键
1.重点:旋转及对应点的有关概念及其应用.
2.难点与关键:从活生生的数学中抽出概念.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.21cnjy.com
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?21·cn·jy·com
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1、2两题有什么共同特点呢?
共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.【来源:21·世纪·教育·网】
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.【出处:21教育名师】
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A、B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.
(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?
(2)请画出旋转中心和旋转角.
(3)指出,经过旋转,点A、B、C、D分别移到什么位置?
(老师点评)
(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.
最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.
三、巩固练习
教材P65 练习1、2、3.
四、应用拓展
例3.两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为/,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.
分析:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
1.旋转及其旋转中心、旋转角的概念.
2.旋转的对应点及其它们的应用.
六、布置作业
1.教材 复习巩固1、2、3.
23.1 图形的旋转(2)
第二课时
教学内容
1.对应点到旋转中心的距离相等.
2.对应点与旋转中心所连线段的夹角等于旋转角.
3.旋转前后的图形全等及其它们的运用.
教学目标
理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.
先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.
重难点、关键
1.重点:图形的旋转的基本性质及其应用.
2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.
教学过程
一、复习引入
(学生活动)老师口问,学生口答.
1.什么叫旋转?什么叫旋转中心?什么叫旋转角?
2.什么叫旋转的对应点?
3.请独立完成下面的题目.
如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?
(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.
二、探索新知
上面的解题过程中,能否得出什么结论,请回答下面的问题:
1.A、B、C、D、E、F到O点的距离是否相等?
2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?
3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?
老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2.∠AOA′,∠BOB′,∠COC′有什么关系?
3.△ABC与△A′B′C′形状和大小有什么关系?
老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.
2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作和刚才作的(3),得出
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.
分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.www.21-cn-jy.com
解:(1)连结CD
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD
(3)在射线CE上截取CB′=CB
则B′即为所求的B的对应点.
(4)连结DB′
则△DB′C就是△ABC绕C点旋转后的图形.
例2.如图,四边形ABCD是边长为1的正方形,且DE=/,△ABF是△ADE的旋转图形.
(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?
(4)如果连结EF,那么△AEF是怎样的三角形?
分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.△ABF与△ADE是完全重合的,所以它是直角三角形. 21*cnjy*com
解:(1)旋转中心是A点.
(2)∵△ABF是由△ADE旋转而成的
∴B是D的对应点
∴∠DAB=90°就是旋转角
(3)∵AD=1,DE=/
∴AE=/=/
∵对应点到旋转中心的距离相等且F是E的对应点
∴AF=/
(4)∵∠EAF=90°(与旋转角相等)且AF=AE
∴△EAF是等腰直角三角形.
三、巩固练习: 教材P64 练习1、2.
四、应用拓展
例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.
分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.
五、归纳小结(学生总结,老师点评)
本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.2-1-c-n-j-y
六、布置作业
1.教材 复习巩固4 综合运用5、6.
23.1 图形的旋转(3)
第三课时
教学内容:选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.
教学目标:理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.21*cnjy*com
重难点、关键
1.重点:用旋转的有关知识画图.
2.难点与关键:根据需要设计美丽图案.
教具、学具准备
小黑板
教学过程
一、复习引入
1.(学生活动)老师口问,学生口答.
(1)各对应点到旋转中心的距离有何关系呢?
(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?
(3)两个图形是旋转前后的图形,它们全等吗?
2.请同学独立完成下面的作图题.
如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.
(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.
二、探索新知
从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.21世纪教育网版权所有
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
/
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30°的旋转图形.
/
因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
例1.如下图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.21教育网
分析:只要以O为旋转中心、旋转角以上面为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可.www-2-1-cnjy-com
解:(1)连结OA
(2)以O点为圆心,OA长为半径旋转45°,得A.
(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.【来源:21cnj*y.co*m】
(4)按菊花一叶图案画出各菊花一叶.
那么所画的图案就是绕O点旋转后的图形.
例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,请同学画出图案,它还是原来的菊花吗?【版权所有:21教育】
老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.
三、巩固练习
教材P65 练习.
四、应用拓展
例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.
分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.21·世纪*教育网
解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;
(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;21教育名师原创作品
(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A′G′、G′D′、D′H′、H′A′;
(4)所作出的图案就是所求的图案.
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;
2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.2·1·c·n·j·y
六、布置作业
1.教材P67 综合运用7、8、9.