以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
二次函数y=a(x-h)2 的图象和性质
第26章
26.1 二次函数(4)
二次函数y=ax2+c的性质
开口向上
开口向下
a的绝对值越大,开口越小
关于y轴对称
顶点是最低点
顶点是最高点
在对称轴左侧递减
在对称轴右侧递增
在对称轴左侧递增
在对称轴右侧递减
c>0
c<0
c<0
c>0
(0,c)
探究
解: 先列表
描点
-2
…
0
-0.5
-2
-0.5
-8
…
-4.5
-8
…
-2
-0.5
0
-4.5
-2
…
-0.5
x=-1
讨论
抛物线 与抛物线 , 有什么关系?
向左平移1个单位
讨论
向右平移1个单位
即:
顶点(0,0)
顶点(2,0)
直线x=-2
直线x=2
向右平移2个单位
向左平移2个单位
顶点(-2,0)
对称轴:y轴
即直线: x=0
练习
在同一坐标系中作出下列二次函数:
观察三条抛物线的相互关系,并分别指出它们的开口方向,对称轴及顶点.
向右平移2个单位
向右平移2个单位
向左平移2个单位
向左平移2个单位
一般地,抛物线y=a(x-h)2有如下特点:
(1)对称轴是x=h;
(2)顶点是(h,0).
(3)抛物线y=a(x-h)2可以由抛物线y=ax2向左或向右平移|h|得到.
h>0,向右平移;
h<0,向左平移
归纳
练习
y= −2(x+3)2
画出下列函数图象,并说出抛物线的开口方向、对称轴、顶点,最大值或最小值各是什么及增减性如何?。
y= 2(x-3)2
y= −2(x-2)2
y= 3(x+1)2
二次函数y=a(x-h)2的性质
开口向上
开口向下
a的绝对值越大,开口越小
直线x=h
顶点是最低点
顶点是最高点
在对称轴左侧递减
在对称轴右侧递增
在对称轴左侧递增
在对称轴右侧递减
h>0
h<0
h<0
h>0
(h,0)
1、若将抛物线y=-2(x-2)2的图象的顶点移到原点,则下列平移方法正确的是( )
A、向上平移2个单位
B、向下平移2个单位
C、向左平移2个单位
D、向右平移2个单位
C
如何平移:
3、抛物线y=4(x-3)2的开口方向 ,对称轴是 ,顶点坐标是 ,抛物线有最 点,
当x= 时,y有最 值,其值为 。
抛物线与x轴交点坐标 ,与y轴交点坐标 。
向上
直线x=3
(3,0)
低
3
小
0
(3,0)
(0,36)
向上
直线x=-3
( -3 , 0 )
直线x=1
直线x=3
向下
向下
( 1 , 0 )
( 3, 0)
知识巩固
4.用配方法把下列函数化成y=a(x-h)2的形式,并说出开口方向,顶点坐标和对称轴。
小结
3.抛物线y=ax2+k有如下特点:
当a>0时, 开口向上;
当a<0时,开口向上.
(2)对称轴是y轴;
(3)顶点是(0,k).
抛物线y=a(x-h)2有如下特点:
(1)当a>0时, 开口向上,当a<0时,开口向上;
(2)对称轴是x=h;
(3)顶点是(h,0).
2.抛物线y=ax2+k可以由抛物线y=ax2向上或向下平移|k|得到.
抛物线y=a(x-h)2可以由抛物线y=ax2向左或向右平移|h|得到.
(k>0,向上平移;k<0向下平移.)
(h>0,向右平移;h<0向左平移.)
1.抛物线y=ax2+k、抛物线y=a(x-h)2和抛物线y=ax2的形状完全相同,开口方向一致;
(1)当a>0时, 开口向上,当a<0时,开口向下;