教师专用AI助手登录 / 注册
首页>人教版初中数学九年级上册>24.1 圆的有关性质
  • 资料信息
  • 科目: 

    人教版初中数学九年级上册 - 24.1 圆的有关性质

  • 格式:  PPT
  • 大小:  1.33M    40张
  • 时间:  2017-08

24.1 圆的有关性质 课件8

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
24.1 圆的有关性质 课件824.1 圆的有关性质 课件824.1 圆的有关性质 课件8
圆 的 对 称 性
圆的对称性
圆是轴对称图形吗?
如果是,它的对称轴是什么?你能找到多少条对称轴?
你是用什么方法解决上述问题的?
圆是中心对称图形吗?
如果是,它的对称中心是什么?你能找到多少条对称轴?
你又是用什么方法解决这个问题的?
圆的对称性
圆是轴对称图形.
圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.
可利用折叠的方法即可解决上述问题.
圆也是中心对称图形.
它的对称中心就是圆心.
用旋转的方法即可解决这个问题.
圆的相关概念
圆上任意两点间的部分叫做圆弧,简称弧.
直径将圆分成两部分,每一部分都叫做半圆(如弧ABC).
连接圆上任意两点间的线段叫做弦(如弦AB).
经过圆心弦叫做直径(如直径AC).

③AM=BM,
垂径定理
AB是⊙O的一条弦.
你能发现图中有哪些等量关系?与同伴说说你的想法和理由.
作直径CD,使CD⊥AB,垂足为M.
右图是轴对称图形吗?如果是,其对称轴是什么?
小明发现图中有:
由 ① CD是直径
② CD⊥AB
做一做
垂径定理
如图,小明的理由是:
连接OA,OB,
则OA=OB.
在Rt△OAM和Rt△OBM中,
∵OA=OB,OM=OM,
∴Rt△OAM≌Rt△OBM.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
垂径定理三种语言
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
老师提示:
垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.
CD⊥AB,
如图∵ CD是直径,
∴AM=BM,
②CD⊥AB,
垂径定理的逆定理
AB是⊙O的一条弦,且AM=BM.
你能发现图中有哪些等量关系?与同伴说说你的想法和理由.
过点M作直径CD.
右图是轴对称图形吗?如果是,其对称轴是什么?
小明发现图中有:
由 ① CD是直径
③ AM=BM

平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
你可以写出相应的命题吗?
相信自己是最棒的!
垂径定理的逆定理
如图,在下列五个条件中:
只要具备其中两个条件,就可推出其余三个结论.
① CD是直径,
③ AM=BM,
② CD⊥AB,
垂径定理及逆定理
垂直于弦的直径平分弦,并且平分弦所的两条弧.
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.
平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.
平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
6.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?
证明:过O作OE⊥AB,垂足为E,
则AE=BE,CE=DE。
∴ AE-CE=BE-DE
即 AC=BD
5.在半径为30㎜的⊙O中,弦AB=36㎜,则O到AB的距离是= ,∠OAB的余弦值= 。
练一练(2)
0.6
24mm
注意:解决有关弦的问题,过圆心作弦的垂线,或作垂直于弦的直径,也是一种常用辅助线的添法.
挑战自我垂径定理的推论
如果圆的两条弦互相平行,那么这两条弦所平的弧相等吗?
老师提示: 这两条弦在圆中位置有两种情况:
垂径定理的推论 圆的两条平行弦所夹的弧相等.
挑战自我画一画
如图,M为⊙O内的一点,利用尺规作一条弦AB,使AB过点M.并且AM=BM.
挑战自我填一填
1、判断:
⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧. ( )
⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧. ( )
⑶经过弦的中点的直径一定垂直于弦.( )
⑷圆的两条弦所夹的弧相等,则这两条弦平行. ( )
⑸弦的垂直平分线一定平分这条弦所对的弧. ( )
挑战自我画一画
4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.
挑战自我填一填
1、判断:
⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧. ( )
⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧. ( )
⑶经过弦的中点的直径一定垂直于弦.( )
⑷圆的两条弦所夹的弧相等,则这两条弦平行. ( )
⑸弦的垂直平分线一定平分这条弦所对的弧. ( )





例2:如图,圆O的弦AB=8 ㎝ ,
DC=2㎝,直径CE⊥AB于D,
求半径OC的长。
垂径
直径MN⊥AB,垂足为E,交弦CD于点F.
例3:如图,已知圆O的直径AB与
弦CD相交于G,AE⊥CD于E,
BF⊥CD于F,且圆O的半径为
10㎝,CD=16 ㎝,求AE-BF的长。
练习3:如图,CD为圆O的直径,弦
  AB交CD于E, ∠ CEB=30°,
  DE=9㎝,CE=3㎝,求弦AB的长。
图中相等的线段有 :
挑战自我画一画
2.已知:如图,⊙O 中,弦AB∥CD,AB<CD,
直径MN⊥AB,垂足为E,交弦CD于点F.
图中相等的线段有 :
.
图中相等的劣弧有:
.
小 结
1、圆的轴对称性
2、垂径定理及其逆定理的图式
2. 圆对称性(2)
垂径定理三种语言
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
老师提示:
垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.
CD⊥AB,
如图∵ CD是直径,
∴AM=BM,
垂径定理的应用
例1 如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求这段弯路的半径.
解:连接OC.
老师提示:
注意闪烁的三角形的特点.
赵州石拱桥
1.1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为 37.4 m,拱高(弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半径(精确到0.1m).
你是第一个告诉同学们解题方法和结果的吗?
赵州石拱桥
解:如图,用 表示桥拱, 所在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为垂足,与 相交于点C.根
据垂径定理,D是AB的中点,C是 的中点,CD就是拱高.
由题设
在Rt△OAD中,由勾股定理,得
解得 R≈27.9(m).
答:赵州石拱桥的桥拱半径约为27.9m.
船能过拱桥吗
2 . 如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?
相信自己能独立完成解答.
船能过拱桥吗
解:如图,用 表示桥拱, 所在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为垂足,与 相交于点C.根
据垂径定理,D是AB的中点,C是 的中点,CD就是拱高.
由题设得
在Rt△OAD中,由勾股定理,得
解得 R≈3.9(m).
在Rt△ONH中,由勾股定理,得
∴此货船能顺利通过这座拱桥.
垂径定理三角形
在a,d,r,h中,已知其中任意两个量,可以求出其它两个量.
⑴d + h = r
垂径定理的应用
在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB = 600mm,求油的最大深度.
垂径定理的逆应用
在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB = 600mm,求油的最大深度.
D
C
挑战自我
1、要把实际问题转变成一个数学问题来解决.
2、熟练地运用垂径定理及其推论、勾股定理,并用方程的思想来解决问题.
3、对于一个圆中的弦长a、圆心到弦的距离d、圆半径r、弓形高h,这四个量中,只要已知其中任意两个量,就可以求出另外两个量,如图有:
⑴d + h = r
2. 圆对称性(3)
圆的对称性及特性
圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.
圆也是中心对称图形,它的对称中心就是圆心.
用旋转的方法可以得到:
一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.
这是圆特有的一个性质:圆的旋转不变性
圆心角
圆心角 顶点在圆心的角(如∠AOB).
弦心距 过圆心作弦的垂线,圆心与垂足之间的距离(如线段OD).
如图,在⊙O中,分别作相等的圆心角和∠AOB和∠A′OB′, 将其中的一个旋转一个角度,使得OA和O′A′重合.
你能发现那些等量关系?说一说你的理由.
圆心角
圆心角, 弧,弦,弦心距之间的关系定理
如图,如果在两个等圆⊙O和⊙O′中,分别作相等的圆心角和∠AOB和∠A′O′B′,固定圆心,将其中的一个旋转一个角度,使得OA和O′A′重合.
你又能发现那些等量关系?说一说你的理由.
圆心角, 弧,弦,弦心距之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等所对的弦相等,所对的弦的弦心距相等.
由条件:
①∠AOB=∠A′O′B′
③AB=A′B′
④ OD=O′D′
拓展与深化
在同圆或等圆中,如果轮换下面五组条件:
①两个圆心角,②两条弧,③两条弦,④两条弦心距,你能得出什么结论?与同伴交流你的想法和理由.
如由条件:
③AB=A′B′
④ OD=O′D′
①∠AOB=∠A′O′B′
推论
在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.
如由条件:
③AB=A′B′
④ OD=O′D′
①∠AOB=∠A′O′B′
化心动为行动
1.已知A,B是⊙O上的两点,∠AOB=1200,C是 的中点,试确定四边形OACB的形状,并说明理由.
2.利用一个圆及若干条弦分别设计出符合下列条件的图案:
(1)是轴对称图形但不是中心对称图形;
(2)即是轴对称图形又是中心对称图形.
3.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.
反思自我
想一想,你的收获和困惑有哪些?
说出来,与同学们分享.