以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
小学奥数 举一反三
(五年级)
奥数的由来
奥数概述
“奥数”是奥林匹克数学竞赛的简称。1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。
奥数的由来
“奥数热”受控制
国际数学奥林匹克(InternationalMathe2maticalOlympiads)简称IMO,是一项以数学为内容,以中学生为对象的国际性竞赛活动,至今已有30余年的历史。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过学科考试。
奥数的由来
“奥数热”受控制
有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。现在,IMO已成为一项国际上最有影响力的学科竞赛,同时也是公认水平最高的中学生数学竞赛。
我国的数学竞赛始于1956年。在著名数学家华罗庚、苏步青等人的倡导下,由中国数学理事会发起,北京、天津、上海、武汉四城市首先举办了高中数学竞赛。
奥数的历史
奥数的历史
1934年和1935年苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称。1959年罗马尼亚数学物理学会邀请东欧国家中学生参加,在布加勒斯特举办了第一届国际数学奥林匹克竞赛,从此每年举办一次,至今已举办了56届。
奥数的由来
近年奥数在中国
近年来中国代表在数学奥林匹克上的成绩就像中国健儿在奥运会的成绩一样,突飞猛进,从40届到第43届,中国代表队连续四年总分第一。 。
奥数的由来
奥数实质
奥数难度相对比较深,数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。
有许多涉及到实际应用的问题,如计数、图论、逻辑、抽屉原理等。
国际奥林匹克数学竞赛
概述
奖项名称: 国际奥林匹克数学竞赛
其他名称: International Mathematics Olympiad
创办时间:1959年
主办单位:由参赛国轮流主办
国际奥林匹克数学竞赛
奖项介绍
国际奥林匹克数学竞赛是国际中学生数学大赛,在世界上影响非常之大。国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助。第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克、匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。目前参加这项赛事的代表队有80余支。美国1974年参加竞赛,中国1985年参加竞赛。经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化, 有了一整套约定俗成的常规,并为历届东道主所遵循。国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供,但旅费由参赛国自理。参赛选手必须是不超过20岁的中学生,每支代表队有学生6人,另派2名数学家为领队。试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。东道国不提供试题。试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。主试委员会由各国的领队及主办国指定的主席组成。这个主席通常是该国的数学权威。
国际奥林匹克数学竞赛
奖项介绍
职责
主试委员会的职责有7条:
1、选定试题;
2、确定评分标准;
3、用工作语言准确表达试题,并翻译、核准译成各参加国文字的试题;
4、比赛期间,确定如何回答学生用书面提出的关于试题的疑问;
5、解决个别领队与协调员之间在评分上的不同意见;
6、决定奖牌的个数与分数线。 考试分两天进行,每天连续进行4.5小时,考3道题目。同一代表队的6名选手被分配到6个不同的考场,独立答题。答卷由本国领队评判,然后与组织者指定的协调员协商,如有分歧,再请主试委员会仲裁。每道题7分,满分为42分。
7、竞赛设一等奖(金牌)、二等奖(银牌)、三等奖(铜牌),比例大致为1:2:3;获奖者总数不能超过参赛学生的半数。各届获奖的标准与当届考试的成绩有关。
为什么要学奥数?
一、应付小升初考试
二、训练孩子的思维方式
如果是第一个是应试教育,而第二个目的就是素质教育了。奥数不单单是为了竞赛,它已经演变成了一种特殊的素质教育---思维训练。这一点,学校数学是很少能学到的,它主要局限于教材和大纲,局限于水平和专业!
三、更好的学习初中数理化
正是因为奥数的超前教育,以及思维方式的扩展,让更多的孩子体会到了学习的快乐,能更好的去接受更高更深的知识和能力!
低年级孩子学习奥数的好处是什么
全脑训练:
低年龄孩子学习奥数的意义在于对全脑的开发。像是小孩子早期学习舞蹈一样,并不是每个家长让孩子学习舞蹈都是为了让孩子将来成为舞蹈家。但是在现实中我们看到很多学习舞蹈的孩子他的体型、气质就是和没有受过训练的孩子不一样。同样的道理,学习奥数也是这样。奥数的学习是可以利用到全脑的,它要用到左脑的数学逻辑,分析归纳能力,还要用到右脑来分析图形、形状、颜色、大小、重量、远近。除此之外还会运用到左后脑的计划安排,右后脑的理解沟通,所以说学习奥数是全脑的一个训练。
通过奥数在儿童脑发育期间来培养孩子的能力。
就孩子的学习能力而言,学习奥数可以锻炼孩子的观察力、注意力、思维能力、创新能力和计算能力。这些学习能力的提高与其他科目在学习过程中所用脑产生途径和效果是不一样的。
怎样学习奥数?
学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。
在孩子真正掌握了“奥数”的学习方法后,坚持每天做一定数量的练习题就显得尤为重要。做题的前提是对学过的知识有了透彻的领悟,做题不光是只做难题,简单、中等、难,这三类题都要做,最好把比例控制在3:5:2为最佳。从而避免了孩子难题还会做,中等题和基本题总是准确率不高的现象。
六年级开始后要坚持每天做十道左右的题。为了提高孩子解题速度,根据题目的难度每次限时40-60分钟,然后由家长严格计时并根据标准答案判分。记录不会做或做错的题目,有能力的家长可以自己给孩子讲解,最好把一时不理解的题目请教相关的有丰富经验的老师,直至弄懂、弄通为止!!!对于做题中发现的问题及时解决,这是我们做题最终的也是最重要的目的!以前不会做或做错的题目,以后一定要让孩子不定时的至少再做一次!题目的选择可根据正在学习的奥数课程和辅导老师的建议,由孩子和家长一起讨论来决定。学习几个知识点后一定要做一些综合试卷或综合题,主要针对孩子学习的“薄弱”环节,要求辅导老师必须有针对性地给孩子多做些题目。做题的另一个目的就是要从小培养孩子具有举一反三、融会贯通的能力。注意:刚开始做题前一定要对所学知识已经透彻、深刻的掌握,否则题做得再多的也只会事倍功半,起不到我们想要的效果。
中国数学奥林匹克(CMO)简介
全国中学生数学冬令营是在全国高中数学联赛的基础上进行的一次较高层次的数学竞赛。1985年,由北京大学、南开大学、复旦大学和中国科技大学四所大学倡议,中国数学会决定,自1986年起每年一月份举行全国中学生数学冬令营。
冬令营为期5天,第一天为开幕式,第二、第三天考试,第四天学术报告或参观游览,第五天闭幕式,宣布考试成绩和颁奖。CMO考试完全模拟IMO进行,每天3道题,限四个半小时完成。每题21分(为IMO试题的3倍),6个题满分为126分。各省、市、自治区派出选手参赛,还有香港、澳门和俄罗斯代表队。题目难度较国际数学奥林匹克为高,技术性极强。比赛设有一至三等奖。成绩顶尖学生将进入中国国家集训队,预备同年7月的国际数学奥林匹克。
从1990年开始,冬令营设立了陈省身杯团体赛。从1991年起,全国中学生数学冬令营被正式命名为中国数学奥林匹克(Chinese Mathematical Olympiad,简称CMO)。它成为中国中学生最高级别、最具规模、最有影响的数学竞赛。
第1周 平均数(一)
专题简析:
把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?
下面的数量关系必须牢记:
平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量×平均数
二、精讲精练
例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?
分析与解答:(1)1箱苹果+1箱梨+1箱橘子=42×3=126(个);
(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)
(3)1箱苹果+1箱桃=37×2=74(个)
由(1)(2)两个等式可知:
1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。
二、精讲精练
练 习 一
1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。问:甲、丁各得多少分
2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?
3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵?
二、精讲精练
例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。求这个班男生有多少人?
分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。
二、精讲精练
练 习 二
1,两组学生进行跳绳比赛,平均每人跳152下。甲组有6人,平均每人跳140下,乙组平均每人跳160下。乙组有多少人?
2,有两块棉田,平均每亩产量是92.5千克,已知一块地是5亩,平均每亩产量是101.5千克;另一块田平均每亩产量是85千克。这块田是多少亩?
3,把甲级和乙级糖混在一起,平均每千克卖7元,乙知甲级糖有4千克,平均每千克8元;乙级糖有2千克,平均每千克多少元?
二、精讲精练
例3 某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?
分析:
原来三个数的和是2×3=6,后来三个数的和是3×3=9,9比6多出了3,是因为把那个数改成了4。因此,原来的数应该是4-3=1。
二、精讲精练
练 习 三
1,已知九个数的平均数是72,去掉一个数之后,余下的数的平均数是78。去掉的数是多少?
2,有五个数,平均数是9。如果把其中的一个数改为1,那么这五个数的平均数为8。这个改动的数原来是多少?
3,甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分。可是,甲在抄分数时,把自己的分错抄成了87分,因此,算得四人的平均分是88分。求甲在这次考试中得了多少分?
二、精讲精练
例4 五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?
分析:
98分比89分多9分。多算9分就能使全班平均每人的成绩上升91.7-91.5=0.2(分)。9里面包含有几个0.2,五一班就有几名同学。
二、精讲精练
练 习 四
1,五(1)班有40人,期中数学考试,有2名同学去参加体育比赛而缺考,全班平均分为92分。缺考的两位同学补考均为100分,这次五(1)班同学期中考试的平均分是多少分?
2,某班的一次测验,平均成绩是91.3分。复查时发现把张静的89分误看作97分计算,经重新计算,该班平均成绩是91.1分。问全班有多少同学?
3,五个数的平均数是18,把其中一个数改为6后,这五个数的平均数是16。这个改动的数原来是多少?
二、精讲精练
例5 把五个数从小到大排列,其平均数是38。前三个数的平均数是27,后三个数的平均数是48。中间一个数是多少?
分析:
先求出五个数的和:38×5=190,再求出前三个数的和:27×3=81,后三个数的和:48×3=144。用前三个数的和加上后三个数的和,这样,中间的那个数就算了两次,必然比190多,而多出的部分就是所求的中间的一个数。
二、精讲精练
练 习 五
1,甲、乙、丙三人的平均年龄为22岁,如果甲、乙的平均年龄是18岁,乙、丙的平均年龄是25岁,那么乙的年龄是多少岁?
2,十名参赛者的平均分是82分,前6人的平均分是83分,后6人的平均分是80分。那么第5人和第6人的平均分是多少分?
3,下图中的○内有五个数A、B、C、D、E,□内的数表示与它相连的所有○中的平均数。求C是多少?
第2周 平 均 数(二)
例1 小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?
分析与解答:
100分比86分多14分,这14分必须填补到前几次的平均分84分中去,使其平均分成为86分。每次填补86-84=2(分),14里面有7个2,所以,前面已经测验了7次,这是第8次测验。
二、精讲精练
练 习 一
1,老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?
2,一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?
3,两组同学进行跳绳比赛,平均每人跳152次。甲组有6人,平均每人跳140次,如果乙组平均每人跳160次,那么,乙组有多少人?
二、精讲精练
练 习 二
1,甲、乙、丙三个数的平均数是82,甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?
2,小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。这一次是他第几次测验?
3,五个数排一排,平均数是9。如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?
二、精讲精练
例3 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。往返两地的平均速度是每小时多少千米?
分析与解答:用往返的路程除以往返所用的时间就等于往返两地的平均速度。显然,要求往返的平均速度必须先求出逆水行全程时所用的时间。因为360÷10=36(千米)是顺水速度,它是汽艇的静水速度与水流速度的和,所以,此汽艇的静水速度是36-6=30(千米)。而逆水速度=静水速度-水流速度,所以汽艇的逆水速度是30-6=24(千米)。逆水行全程时所用时间是360÷24=15(小时),往返的平均速度是360×2÷(10+15)=28.8(千米)。
二、精讲精练
练 习 三
1,甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。求汽船从甲码头顺流行驶几小时到达乙码头?
2,一艘客轮从甲港驶向乙港,全程要行165千米。已知客轮的静水速度是每小时30千米,水速每小时3千米。现在正好是顺流而行,行全程需要几小时?
3,甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?
二、精讲精练
例4 幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块。求一共分掉多少块饼干?
分析与解答:只要知道了大、小班小朋友分得的平均数,再乘(30+20)人就能求出饼干的总块数。因为大班的小朋友每人比大、小班小朋友的平均数多2块,30个小朋友一共多2×30=60(块),这60块平均分给20个小班的小朋友,每人可得60÷20=3(块)。因此,大、小班小朋友分得平均块数是10+3=13(块)。一共分掉13×(30+20)=650(块)。
二、精讲精练
练 习 四
1,数学兴趣小组里有4名女生和3名男生,在一次数学竞赛中,女生的平均分是90分,男生的平均分比全组的平均分高2分,全组的平均分是多少分?
2,两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下?
3,一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元。问这位技术工得多少元?
二、精讲精练
例5 王强从A地到B地,先骑自行车行完全程的一半,每小时行12千米。剩下的步行,每小时走4千米。王强行完全程的平均速度是每小时多少千米?
分析与解答:求行完全程的平均速度,应该用全程除以行全程所用的时间。由于题中没有告诉我们A地到B地间的路程,我们可以设全程为24千米(也可以设其他数),这样,就可以算出行全程所用的时间是12÷12+12÷4=4(小时),再用24÷4就能得到行全程的平均速度是每小时6千米。
二、精讲精练
练 习 五
1,小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。
2,运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。
3,把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?