登录 / 注册
首页>人教版小学数学六年级下册>二:百分数(二)

人教版六下数学《第二单元:百分数(二)》教案教学设计免费下载33

以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
第二单元
百 分 数(二)
单元教学目的:
1、解决“打折”等实际问题,沟通各类百分数问题的联系。
2、体验百分数在日常生活中的广泛应用以及在交流、信息传递中的作用,树立依法纳税和科学理财的意识。
3、感受百分数在日常生活中和生产中的广泛应用,对周围环境中与百分数有关的事物具有好奇心,激发学生学好数学的信心。
二、教学重点、难点:
重点:让学生理解折扣、成数、税率和利息的概念,会简单计算。
难点:利用所学知识,解决各类百分数应用题。
三、教学时间: 课时。

单元(测试)小结:

班级
人数
总分
平均分
优秀人数
优秀率
及格人数
及格率



















典型错误及整改措施:


NO.     
课题:折扣
教学内容:教材P8例1。
授课日期: 月 日


设计者:朱晓峰

教学目标:
1.明确折扣的含义,能熟练地把折扣写成分数、百分数,正确解答有关折扣的实际问题。
2.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
3.感受数学知识与生活的紧密联系,激发学习兴趣。
重点和难点:
重点:会解答有关折扣的实际问题。
难点:合理、灵活地选择方法,解答有关折扣的实际问题。
教学准备:课件

教学流程:
一、情景导入
圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?
二、新课讲授
1、理解“折扣”的含义。
(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(课件出示)
(3)引导提问:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?
(5)学生动手操作、计算、讨论,找出规律:
原价乘以70%恰好是标签的售价 或 现价除以原价大约都是70%。
(6)归纳定义。
通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。
2、解决实际问题。
(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①导学生分析题意:打八五折怎么理解?是以谁为单位“1”?
②先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价
③学生独立根据数量关系式,列式解答。
④全班交流。根据学生的汇报,板书:
(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?
②学生试算,独立列式。
③全班交流。根据学生的汇报并板书。
3、提高运用
在某商店促销活动时,原价200元的商品打九折出售,最后剩下的个,商家再次打八折出售,最后的几商品售价多少元?
引导学生分析,学生独立完成,再集体交流,让学生明确:“折上折”相当于连续求一个数的百分之几是多少。
三、巩固练习
1、完成教材第8页“做一做”练习题。
2、完成教材第13页练习二第1~3题。
四、课堂小结
通过这节课的学习你有什么收获?
调整:

板书设计:
百分数:折扣
几折就是十分之几,也就是百分之几十

(1)180×85%=153(元) (2)160-160×90%
答:买这辆车用了153元 。 =160-144
=16(元)
160×(1-90%)
= 160×10%
= 16(元)
答:比原价便宜了16钱。


反思:


NO.     
课题:成数
教学内容:教材P9例2。
授课日期: 月 日


设计者:朱晓峰

教学目标:
1.明确成数的含义。能熟练的把成数写成分数、百分数。正确解答有关成数的实际问题。
2.通过成数的计算,进一步掌握解决百分数问题的方法。
3.感受数学知识与生活的紧密联系,激发学习兴趣。
重点和难点:
重点:成数的理解和计算。
难点:会解决生活中关于成数的实际问题。
教学准备:课件

教学流程:
一、情景导入
(课件出示)农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”……
同学们有留意到类似的新闻报道吗?(学生汇报相关报导)
二、新课讲授
1、理解成数的含义。
成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”
(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?
(学生讨论并回答,教师随机板书)
成数 分数 百分数
二成 十分之二 20%
(2)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。
②北京出游人数比去年增加两成。
引导学生讨论并回答。
2、解决实际问题。
(1)课件出示教材第9页例2:
某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)引导学生分析题目,理解题意:
①今年比去年节电二成五怎么理解?是以哪个量为单位“1”?
②找出数量关系式。
先让学生找出单位“1”,然后再找出数量关系式:
今年的用电量=去年的用电量×(1-25%)
③学生独立根据关系式,列式解答。
④全班交流。
方法一: 350×(1-25%) 方法二:350-350×25%
=350×75% =350-350×0.25
=350×0.75 =350-87.5
=262.5(万千瓦时) =262.5(万千瓦时)
三、练习巩固
1、完成教材第9页“做一做”。
2、完成练习二第4、5题。
四、课堂小结
这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?
调整:

板书设计:
百分数:成数

二成 = ( 十分之二 ) = ( 20% )

方法一: 350×(1-25%) 方法二:350-350×25%
=350×75% =350-350×0.25
=350×0.75 =350-87.5
=262.5(万千瓦时) =262.5(万千瓦时)


反思:


NO.     
课题:税率
教学内容:教材P10例3。
授课日期: 月 日


设计者:朱晓峰

教学目标:
1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2.在计算税款的过程中,加深学生对社会现象的理解,提高学生解决问题的能力。
3.感受数学知识与生活的紧密联系,激发学习兴趣。增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
重点和难点:税率的理解和税额的计算。
教学准备:课件。

教学流程:
一、情景导入
1、口答算式。
(1)100的5%是多少?
(2)50吨的10%是多少?
(3)1000元的8%是多少?
(4)50万元的20%是多少?
2、什么是比率?
二、新课讲授
1、阅读教材第10页有关纳税的内容。说说:什么是纳税?
2、税率的认识。
(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。
(2)试说说以下税率各表示什么意思。
A、商店按营业额的5%缴纳个人所得税。
B、某人彩票中奖后,按奖金的20%缴纳个人所得税。
3、税款计算。
(1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?
(2)分析题目,理解题意。
引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。
(3)学生列出算式。
相当于“求一个数的百分之几是多少”,用乘法计算。
列式:30×5%
(4)学生尝试计算。
(5)汇报交流。
30×5% = 30×0.05 = 1.5(万元)
三、巩固练习
1、教材第10页“做一做”。
2、完成教材第14页练习二第6题。
3、完成教材第14页练习二第7题。
4、完成教材第14页练习二第8题。
5、完成教材第14页练习二第10题。
四、课堂小结
这节课我们一起学习了有关纳税的知识,你们对纳税的知识有哪些了解?
调整:

板书设计:
百分数:税率

应纳税额=收入额×税率
收入额=应纳税额÷税率
税率=应纳税额÷收入额×100%
30×5%=1.5(万元)
答:10月份应缴纳营业税约1.5万元。



反思:


NO.     
课题:利率
教学内容:教材P11例4。
授课日期: 月 日


设计者:朱晓峰

教学目标:
1.通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.掌握计算利息的方法,会进行简单计算。
3.对学生进行勤俭节约,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。
重点和难点:掌握利息的计算方法。
教学准备:课件。

教学流程:
一、情景导入
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。一来可以支援国家建设,二来对个人也有好处,既安全、有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
板书课题:利率
二、新课讲授
1、介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2、阅读教材第11页的内容,理解本金、利息、税后利息和利率的含义。
本金:存入银行的钱叫做本金。例题中王奶奶存入的5000元就是本金。
利息:取款时银行多支付的钱叫做利息。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。
3、学会填写存款凭条。
课件出示存款凭条,请学生尝试填写。然后评讲。
(要填写的项目:户名、存期、存入金额、存种、密码、地址等,最后填上日期。)
4、利息的计算。
(1)出示利息的计算公式:
利息=本金×利率×时间
(2)计算连本带息的方法:
连本带息取回的钱 = 本金+利息
(3)学生阅读理解例4,计算后交流汇报,教师板书:
5000+5000×3.75%×2
=5000+375
=5375(元)
答:到期后可以取回5375元钱。
三、巩固练习
1、2012年8月,张爷爷把儿子寄来的8000元钱存入银行,存期5年,年利率为4.75%,到期支取时,张爷爷可得到多少利息?到期时张爷爷一共能取回多少钱?
2、李阳的爸爸将一笔款存入银行整存整取三年,年利率是4.75%,到期时得到的利息是5700元,李阳的爸爸当初存入的是多少钱?
3、乐乐把5000元压岁钱存入银行两年,年利率是3.75%,到期后,他准备把利息的80%捐给“希望工程”。乐乐捐给“希望工程”多少钱?
四、课堂小结
什么叫本金?什么叫利息?什么叫利率?如何计算利息?怎么计算取回的总钱数?
调整:

板书设计:
百分数:利率
利息=本金×利率×存期 取回总钱数=本金+利息

5000+5000×3.75%×2
=5000+375
=5375(元)
答:到期后王奶奶可以取回5375元钱。


反思:


NO.     
课题:整理与复习
教学内容:教材P12例5,练习二。
授课日期: 月 日


设计者:朱晓峰

教学目标:
1.熟练地掌握百分数应用题的数量关系,并能解决问题。
2.通过归纳整理,是学生熟练地掌握解决百分数问题的方法。
3.培养学生良好的学习习惯。
重点和难点:认真审题,用百分数解决实际问题。用百分数解决实际问题。
教学准备:课件。

教学流程:
一、复习整理
前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。
学生交流,汇报,教师随机板书,绘制表格。
知 识 回 顾

 知识点
内 容 摘 要
解题关键

 折扣
几折表示百分之几十 原价×折扣数=现价
1、找准单位“1” 2、正确理解数量关系

 成数
几成表示百分之几十


 税率
应缴税额=各种收入×税率


 利率
利息=本金×利率×存期
取回总钱数=本金+利率



二、综合运用
课件出示例5。
1、学生读题,明确已知条件及问题,尝试说说自己的解题思路。
2、利用提问,引导学生思考回答,归纳出解题思路。
提问启发:“满100元减50元”是什么意思?
引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。
归纳整理解题思路:
(1)在A商场买,直接用总价乘以50%就能算出实际花费。
(2)在B商场买,先看总价中有几个100, 230里有两个100,然后从总价里减去2个50元。
3、学生独立列出算式,并计算出结果。再交流汇报,教师板书:
A商场:230×50%=115(元)
B商场:230-2×50
=230-100
=130(元)
115<130,
答:在A商场买应付115元,在B商场,买应付130元;选择A商场更省钱。
4、总结思考:在什么时候这两个商场价格差不多呢?
三、巩固练习
1、完成教材第12页“做一做”。学生独立完成,教师讲解。
2、完成练习二第12题,再集体交流订正。
3、完成练习二第13题。“折上折”是什么意思?这么计算呢?
4、完成练习二第14题。
5、完成练习二第15题。提示:增长为“-0.068%”表示什么意思?
四、课堂小结
通过这节课,你有什么收获,你将如何运用到生活中呢?
调整:

板书设计:
百分数:整理与复习
知识回顾

知识点
内容摘要
解题关键

折扣
几折表示百分之几十 原价×折扣数=现价
1、找准单位“1” 2、正确理解数量关系

成数
几成表示百分之几十


税率
应缴税额=各种收入×税率


利率
利息=本金×利率×存期 取回总钱数=本金+利率




A商场:230×50%=115(元)
B商场:230-2×50
=230-100
=130(元)
115<130

答:在A商场买应付115元,在B商场,买应付130元;选择A商场更省钱。




反思:


NO.     
课题:生活与百分数
教学内容:教材P16。
授课日期: 月 日


设计者:朱晓峰

教学目标:
1、结合具体情境,经历综合运用所学知识解决理财问题的过程。
2、学会理财,能对自己设计的理财方案作出合理的解释。
3、感受理财的生重要性,培养科学、合理理财的观念。
重点和难点:
学会理财,能对自己设计的理财方案作出合理的解释。
教学准备:课件。

教学流程:
一、导入
同这们,在前面的学习中,我们已经知道“利息”与我们的生活息息相关,可以说“利息”也是我们的生财问路之一。但是不一样的理财方式,带来的效益是不同的,那么怎样理财才能给我们带来尽可能的回报呢?那就一起来参加今天的活动吧!
探究体验,经历过程
活动1
同学们所了解的利率与教材第11页的利率表进行对比,完全相同吗?交流一下,你了解到的国家调整利率的原因。
学生进行小组交流,组织学生汇报:
影响利率的因素非常多,比如通货膨胀、对外贸易、国内经济发展的状况等。在通货膨胀严重时,国家一般会实行相应的紧缩性货币政策,就是减少货币的发行提高利率, 这样老百姓会更愿意将资金存入银行;如果对外贸易失衡的话会造成自主货币的贬值或升值,这会影响货币的购买力,通过汇率的改变,相应的会影响利率的走势。
从需求的角度看,降息有利于减少投资成本,有利于降低储蓄意愿,扩大消费需求,从而有助于扩大内需,从供给角度看,降息有利于减轻企业的财务负担,防止其利润的进一步恶化 。
不同的利率水平代表不同的政策需求,当要求稳健的政策环境时,央行就会适时提高存贷款基准利率,减少货币的需求与供给,降低投资和消费需求,抑制需求过热;当要求积极的政策环境时,央行可适时降低存贷款基准利率,以促进消费和投资。
2.活动2。
师:我们从宏观上了解了利率也是根据实际需求不断调整的,而具体到我们个人的实际需求,我们选取理财方式时,也要慎重选择。请看下面的普通利率表, 帮李阿姨算一算,如果把准备给儿子的2万元存入银行,供他六年后上大学,哪种方法获得的利息最多? 可以小组合作,可以用计算器计算。(课件出示:教材第16页利率表)
学生进行小组合作;教师巡视了解情況 。
组织学生交流时.重点明确存期六年,需要取出再次存入时,要把上一次的利息作为本金的一部分存入。 通过计算使学生明确认识到一次性存入的方法比分开来一次又一次地存入所获得的利息多。
师:普通储蓄存款的存期分为不同的种类,选用不同的方法获得的利息是不同的;同样,教育
储蓄存款的存期以及国债的期限也分为不同种类。李阿姨理财的方式除了普通储蓄存款以外,还可以选择教育储蓄存款或国债,那么教育储蓄存款中获得利息最多的方式是哪种呢? 利息又是多少呢? 国债呢? 请同学们自己先调査一下教育储蓄存款和国债的利率,课下以小组为単位进行计算,帮李阿姨设计一个合理的存款方業,使六年后的收益最大。
总结
师:在本节课的学习中,你有哪些收获?
学生自由交流各自的收获体会。
师:生活中无处不存在百分率,生活中蕴含着 无穷的数学知识,希望同学们关心我们的生活,热爱我们的数学,积极用数学知识解决生活中的同题。

调整:

板书设计:
生活与百分数

学会理财


反思: