登录 / 注册
首页>人教版高中数学必修4>2.4.1平面向量数量积的物理背景及其意义

免费下载数学必修4平面向量数量积的物理背景及其意义ppt课件

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
免费下载数学必修4平面向量数量积的物理背景及其意义ppt课件免费下载数学必修4平面向量数量积的物理背景及其意义ppt课件
新课标人教版课件系列
《高中数学》

必修4
2.4.1《平面向量数量积 的物理背景及其含义》
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
说课提纲
一、 背景分析
二、教学目标设计
三、课堂结构设计
四、教学媒体设计
五、教学过程设计
六、教学评价设计
1、学习任务分析
通过“功”的事例抽象平面向量数量积的含义,探究数量积的性质与运算律,体会类比的思想方法,提高学生抽象概括、推理论证的能力。
(2)教学重点
(1)学习任务
数量积的概念
一、背景分析
2、学生情况分析及教学难点
(1)学生情况
(2)教学难点
对数量积的概念的理解
学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法。
返回
二、教学目标设计
1、“数学课程标准(实验)”对本节内容的要求
(1) 通过物理中“功”等事例,理解平面向量数积的含义及其物理意义;
(2) 体会平面向量的数量积与向量投影的关系;
(3) 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
2、教学目标:
(1)了解平面向量数量积的物理背景,理解数
量积的含义及其物理意义;
(2)体会平面向量的数量积与向量投影的关系,
理解掌握数量积的性质和运算律,并能运用性质和运
算律进行相关的运算和判断;
(3)体会类比的数学思想和方法,进一步培养学
生抽象概括、推理论证的能力。
返回
创设问题情景
抽象概念
探究性质
探究运算律
应用与提高
例题与练习
课堂小结

三、课堂结构设计
返回
四、教学媒体设计
1、高效实用的电脑多媒体课件
2、科学合理的板书设计
平面向量数量积的物理背景及其含义
一、数量积的概念     二、数量积的性质 四、应用与提高
1、概念: 例1:

2、概念强调:(1)记法 例2:

       (2)“规定” 三、数量积的运算律 例3:
3、几何意义:

4、物理意义:
五、教学过程设计
活动一:创设问题情景,激发学习兴趣
活动二: 探究数量积的含义
活动三:探究数量积的运算性质
活动四:探究数量积的运算律
活动五: 应用与提高
活动六: 课堂小结与布置作业
问题1: 我们研究了向量的哪些运算?这些
运算的结果是什么?
活动一:创设问题情景,激发学习兴趣
问题2:我们是怎样引入向量的加法运算的?
我们又是按照怎样的顺序研究这种运算的?
问题3:如图所示,一物体在力F的作用下产生
位移S,
    (1)力F所做的功W= 。
 (2) 请同学们分析这个公式的特点:
W(功)是 量,
F(力)是 量,
S(位移)是 量
θ是 。
活动二:探究数量积的含义
1、概念的抽象
问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
功是力与位移的大小及其夹角余弦的乘积;
  结果是两个向量的大小及其夹角余弦的乘积。
(1)定义 :
(2)定义的简单说明:
2、明晰数量积的定义
问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:
3、研究数量积的几何意义
(1)给出向量投影的概念
(2)问题6:数量积的几何意义是什么?
4、研究数量积的物理意义
问题7:(1)功的数学本质是什么?
(2)尝试练习
一物体质量是10千克,分别做以下运动,求重力做功
的大小。
①、在水平面上位移为10米;
②、竖直下降10米;;
③、竖直向上提升10米
④、沿倾角为30度的斜面向上运动10米;
②、竖直下降10米;
③、竖直向上提升10米;
①、在水平面上位移为10米;
④、沿倾角为30°的斜面向上运动10米;
活动三:探究数量积的运算性质
问题8:
(1)将问题①②③的结论推广到一般向量,
你能得到哪些结论?
(2)比较 的大小,你有什么
结论?
1、性质的发现
2、明晰数量积的性质
3、性质的证明
活动四:探究数量积的运算律
1、运算律的发现
问题9: 我们学过了实数乘法的那些运算律?
这些 运算律对向量是否也适用?
学生可能的回答:
2、明晰运算律
3、运算律的证明
学生独立证明运算律(2)
师生共同证明运算律(3)
活动五:应用与提高
学生练习
活动六、课堂小结与布置作业
1、本节课我们学习的主要内容是什么?
2、平面向量数量积的两个基本应用是什么?
3、我们是按照怎样的思维模式进行概念的归纳 和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?
4、类比向量的线性运算,我们还应该怎样研究数量积?
返回
作业: 课本P121习题2.4A组1、2、3。
六、教学评价设计
1、问答评价。

2、活动评价。

3、练习评价。

4、作业评价。
返回
再见