登录 / 注册
首页>人教版高中数学必修4>1.1.1任意角

高中数学必修4优质课《1.1.1任意角》ppt课件免费下载

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
高中数学必修4优质课《1.1.1任意角》ppt课件免费下载高中数学必修4优质课《1.1.1任意角》ppt课件免费下载
1.1 任意角和弧度制
1.1.1 任意角
第一章 三角函数
高中新课程数学必修④
问题提出
1.角是平面几何中的一个基本图形,角是可以度量其大小的.在平面几何中,角的取值范围如何?
2.过去我们学习了0°~360°范围的角,但在实际问题中还会遇到其他角.如在体操、花样滑冰、跳台跳水等比赛中,常常听到“转体10800”、“转体12600”这样的解说.再如钟表的指针、拧动螺丝的扳手、机器上的轮盘等,它们按照不同方向旋转所成的角,不全是0°~3600范围内的角.因此,仅有0°~360°范围内的角是不够的,我们必须将角的概念进行推广.
任意角
新知讲解一:角的概念的推广
思考2:如图,一条射线的端点是O,它从起始位置OA旋转到终止位置OB,形成了一个角α,其中点O,射线OA、OB分别叫什么名称?
思考3:在齿轮传动中,被动轮与主动轮是按相反方向旋转的.一般地,一条射线绕其端点旋转,既可以按逆时针方向旋转,也可以按顺时针方向旋转.你认为将一条射线绕其端点按逆时针方向旋转600所形成的角,与按顺时针方向旋转600所形成的角是否相等?
1:为了区分形成角的两种不同的旋转方向,作如下规定
规定:
按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.
如果一条射线没有作任何旋转,则称它形成了一个零角.
画图表示一个大小一定的角,先画一条射线作为角的始边,再由角的正负确定角的旋转方向,再由角的绝对值大小确定角的旋转量,画出角的终边,并用带箭头的螺旋线加以标注.
新知讲解二:象限角
思考1:为了进一步研究角的需要,我们常在直角坐标系内讨论角,并使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么对一个任意角,角的终边可能落在哪些位置?
象限角:如果角的终边在第几象限,我们就说这个角是第几象限的角;如果角的终边在坐标轴上,就认为这个角不属于如何象限,或称这个角为轴线角.
练习:判断下列各角:-50°,405°,210°, -200°,-450°分别是第几象限的角?
-450°
思考2:锐角与第一象限的角是什么逻辑关系?钝角与第二象限的角是什么逻辑关系?直角与轴线角是什么逻辑关系?
思考3:第二象限的角一定比第一象限的角大吗?
注意:象限角只能反映角的终边所在象限,不能反映角的大小.
思考5:在直角坐标系中,135°角的终边在什么位置?终边在该位置的角一定是135°吗?
新知讲解三:终边相同的角
思考1:-32°,328°,-392°是第几象限的角?这些角有什么内在联系?
-32°
-392°
328°
S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表示成角α与整数个周角的和.
一般地,所有与角α终边相同的角,连同角α在内所构成的集合S表示成:
练习1:终边在x轴正半轴、负半轴,y轴正半轴、负半轴上的角分别如何表示?
x轴正半轴:α= k·360°,k∈Z ; x轴负半轴:α= 180°+k·360°,k∈Z ;
y轴正半轴:α= 90°+k·360°,k∈Z ; y轴负半轴:α= 270°+k·360°,k∈Z .
练习2:终边在x轴、y轴上的角的集合分别如何表示?
终边在x轴上:S={α|α=k·180°,k∈Z};终边在y轴上:S={α|α=90°+k·180°, k∈Z}.
练习3:第一、二、三、四象限的角的集合分别如何表示?
第一象限:S={α | k·360°<α<
90°+k·360°,k∈Z};
第二象限:S={α | 90°+k·360°<α<
180°+k·360°,k∈Z};
第三象限:S={α | 180°+k·360°<α<
270°+k·360°,k∈Z};
第四象限:S={α | -90°+k·360°<
α练习4:如果α是第二象限的角,那么2α、α/2分别是第几象限的角?
90°+k·360°<α<180°+k·360°
180°+k·720°<2α<360°+k·720°
45°+k·180°<α/2<90°+k·180°
理论迁移
例1 在0°~360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.
129°48′,第二象限角.
S={α|α=45°+k·180°,k∈Z}.
-315°,-135°,45°,225°,405°,585°.
小结作业
1.角的概念推广后,角的大小可以任意取值. 把角放在直角坐标系中进行研究,对于一个给定的角,都有唯一的一条终边与之对应,并使得角具有代数和几何双重意义.
2.终边相同的角有无数个,在0°~360°范围内与已知角β终边相同的角有且只有一个. 用β除以360°,若所得的商为k,余数为α(α必须是正数),则α即为所找的角.
作业:

P5 练习 :3,4,5.