必修2《1.3.2球的体积和表面积》优秀获奖PPT课件免费下载
以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
1.3.2球的体积和表面积
上节知识回顾
柱、锥、台的表面积和体积公式
都可以有台体的表面积和体积特殊化得到
棱柱、棱锥、棱台的表面积
棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和.
圆台的表面积
参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么 .
圆台的侧面展开图是扇环
S侧
S侧=
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有什么关系?这种关系是巧合还是存在必然联系?
棱柱、棱锥和棱台的体积公式:
v=
当s=s‘时为柱体体积公式v=sh.
当s ‘ =0为锥体体积公式v=
怎样求球的体积?
实验:排液法测小球的体积
实验:排液法测小球的体积
实验:排液法测小球的体积
实验:排液法测小球的体积
实验:排液法测小球的体积
实验:排液法测小球的体积
实验:排液法测小球的体积
H
小球的体积
等于
它排开液体的体积
实验:排液法测小球的体积
曹冲称象
假设将圆n等分,则
A2
A1
An
O
A3
回顾圆面积公式的推导
割 圆 术
早在公元三世纪,我国数学家刘徽为推导圆的面积公式而发明了“倍边法割圆术”。他用加倍的方式不断增加圆内接正多边形的边数,使其面积与圆的面积之差更小,即所谓“割之弥细,所失弥小”。这样重复下去,就达到了“割之又割,以至于不可再割,则与圆合体而无所失矣”。这是世界上最早的
“极限”思想。
了解:
已知球的半径为R,用R表示球的体积.
2.球的体积
O
R
O
A
球的体积
定理:半径是R的球的体积
注:推导过程不要求,只需了解
高等于底面半径的旋转体体积对比
阅读材料以及思考题
1.球的直径伸长为原来的2倍,体积变为原来的几倍?
2.一个正方体的顶点都在球面上,它的棱长是4cm,求这个球的体积.
课堂练习
8倍
钢球直径是5cm,.
把钢球放入一个正方体的有盖纸盒中,至少要用多少纸?
用料最省时,球与正方体有什么位置关系?
球内切于正方体
侧棱长为5cm
两个几何体相(内)切:
一个几何体的各个面与另一个几何体的各面相切.
两个几何体相接:
一个几何体的所有顶点都 在另一个几何体的表面上
球面不能展开成平面图形,所以
求球的表面积无法用展开图求出,
如何求球的表面积公式呢?
回忆球的体积公式的推导方法, 得到启发,可以借助极限思想方法来推导球的表面积公式。
. 球的表面积.
球面:半圆以它的直径为旋转轴,旋转所成的曲面。
球(即球体):球面所围成的几何体。
它包括球面和球面所包围的空间。
半径是R的球的体积:
球的表面积
注:推导过程不要求,只需了解
第一步:分割
球面被分割成n个网格,表面积分别为:
则球的体积为:
球的表面积
球的表面积是大圆面积的4倍
R
注:推导过程不要求,只需了解
1、地球和火星都可以看作近似球体,地球半径约为6370km,火星的直径约为地球的一半。
求地球的表面积和体积;
火星的表面积约为地球表面积的几分之几?体积呢?
课堂练习
解:
(1)
(2)
例1.如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的表面积等于圆柱的侧面积.
(2)球的表面积等于圆柱全面积的三分之二.
证明:
(2)
例2.如图,已知球O的半径为R,正方体ABCD-A1B1C1D1的棱长 为a,它的各个顶点都在球O的球面上,
求证:
分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。
略解:
变题1.如果球O切于这个正方体的六个面,则有R=————。
。
1、一个四面体的所有的棱都为 ,四个顶点在同
一球面上,则此球的表面积( )
A 3л
B 4л
D 6л
●
●
C
球半径为R,O为A在平面BCD上的射影,M为CD的中点。
A
1、一个四面体的所有的棱都为 ,四个顶点在同
一球面上,则此球的表面积( )
A 3л
B 4л
D 6л
选A
2、若正四体的棱长都为6,内有一球与四个面都相
切,求球的表面积。
解:作出过一条侧棱PC和高PO的截面,则截面三角形PDC的边PD是斜高,DC是斜高的射影,球被截成的大圆与DP、DC相切,连结EO,设球半径为r,
2、若正四体的棱长都为6,内有一球与四个面都相
切,求球的表面积。
解法2:连结OA、OB、OC、OP,那么
解题小结:
1、多面体的“切”、“接”问题,必须明确“切”、“接”位置和有关元素间的数量关系,常借助“截面”图形来解决。
2、正三棱锥、正四面体是重要的基本图形,要掌握其中的边、角关系。能将空间问题化为平面问题得到解决,并注意方程思想的应用。
3、注意化整为零的思想的应用。
4、正四面体的内切球半径等于其高的四分之一,外接球半径等于其高的四分之三。
小结:
(1)有关球和球面的概念。
(2)球的体积公式:
球的表面积公式:
(3)用“分割-求近似和-化为准确和”
的数学方法推出了球的体积和表面积公式:
(4)球的体积公式和表面积的一些运用。
作业
1.习题1.3
2.导与练