登录 / 注册
首页>人教版高中数学必修1>1.2.1函数的概念

《1.2.1函数的概念》课件ppt免费下载(高中数学必修1)

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
《1.2.1函数的概念》课件ppt免费下载(高中数学必修1)《1.2.1函数的概念》课件ppt免费下载(高中数学必修1)
1.2.1
函数的概念
复习提问
正比例函数、反比例函数、一次函数、
二次函数等.
1.初中所学的函数的概念是什么?
在一个变化过程中有两个变量x和y,
如果对于x的每一个值,y都有唯一的值
与它对应. 那么就说y是x的函数,其中x
叫做自变量.
2.初中学过哪些函数?
示例1:一枚炮弹发射后,经过26s落到
地面击中目标. 炮弹的射高为845m,且
炮弹距地面的高度h (单位:m)随时间t
(单位:s)变化的规律是h=130t-5t2.
新课
示例2:近几十年来,大气层中的臭氧迅
速减少,因而出现了臭氧层空沿问题. 下
图中的曲线显示了南极上空臭氧层空洞
的面积从1979~2001年的变化情况.
示例3:国际上常用恩格尔系数反映一个
国家人民生活质量的高低,恩格尔系数
越低,生活质量越高,下表中恩格尔系
数随时间(年)变化的情况表明,“八五”
计划以来,我国城镇居民的生活质量发
生了显著变化.
“八五”计划以来我国城镇居民
恩格尔系数变化情况
设A、B是非空的数集,如果按照某
个确定的对应关系f,使对于集合A中的
任意一个数x,在集合B中都有唯一确定
的数 f(x)和它对应,那么就称f:A→B为
从集合A到集合B的一个函数,记作:
y=f (x),xA
1. 定义
形成概念
例1若物体以速度v作匀速直线运动,则
物体通过的距离S与经过的时间t的关系
是S=vt.
下列例1、例2、例3是否满足函数定义
例2某水库的存水量Q与水深h(指最深处
的水深)如下表:
例3设时间为t,气温为T(℃),自动测温
仪测得某地某日从凌晨0点到半夜24点
的温度曲线如下图.
定义域A;
值域{f(x)|x∈R};
对应法则f.
2. 函数的三要素:
(2) f 表示对应法则,不同函数中f 的具
体含义不一样;
函数符号y=f (x) 表示y是x的函数,
f (x)不是表示 f 与x的乘积;
3. 表示函数的方法:
解析式:把常量和表示自变量的字母
用一系列运算符号连接起来,得到的
式子叫做解析式.
列表法:列出表格来表示两个变量之
间的对应关系.
图象法:用图象表示两个变量之间的
对应关系.
4.已学函数的定义域和值域
定义域R,值域R.
定义域{x|x≠0},值域{y|y≠0}.
⑴ 一次函数f(x)=ax+b(a≠0)

4.已学函数的定义域和值域
⑶二次函数f(x)=ax2+bx+c (a≠0)
定义域:R,
值域:
当a>0时,
当a<0时,
例1求下列函数的定义域:
例题讲解



⑴解题时要注意书写过程,注意紧扣函
数定义域的含义.由本例可知,求函数的
定义域就是根据使函数式有意义的条件,
自变量应满足的不等式或不等式组,解
不等式或不等式组就得到所求的函数的
定义域.
强调:
①若f(x)是整式,则函数的定义域是实数
集R;
②若f(x)是分式,则函数的定义域是使分
母不等于0的实数集;
③若f(x)是二次根式,则函数的定义域是
使根号内的式子大于或等于0的实数集合;
强调:
⑵求用解析式y=f(x)表示的函数的定义域
时,常有以下几种情况:
④若f(x)是由几个部分的数学式子构成的,
则函数的定义域是使各部分式子都有意义
的实数集合;
⑤若f(x)是由实际问题抽象出来的函数,则
函数的定义域应符合实际问题.
强调:
例2已知函数f(x)=3x2-5x+2,求f(3),




例3
例4下列各组中的两个函数是否为相同的
函数?
(定义域不同)
(定义域、值域都不同)



(定义域不同)
教材P.19练习第1、2、3题
课堂练习
课堂小结
1.函数定义域的求法;
2.判断函数是否为同一函数的方法;
3.求函数值.
课后作业
2.教材P.24习题1.2第1、4、6题.
1.阅读教材;