免费下载高中数学必修1教研课《1.2.1函数的概念》课件PPT
以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
函数的概念
复习提问
1.初中所学的函数的概念是什么?
复习提问
1.初中所学的函数的概念是什么?
在一个变化过程中有两个变量x和y,
如果对于x的每一个值,y都有唯一的值
与它对应. 那么就说y是x的函数,其中x
叫做自变量.
在一个变化过程中有两个变量x和y,
如果对于x的每一个值,y都有唯一的值
与它对应. 那么就说y是x的函数,其中x
叫做自变量.
复习提问
2.初中学过哪些函数?
1.初中所学的函数的概念是什么?
复习提问
正比例函数、反比例函数、一次函数、
二次函数等.
1.初中所学的函数的概念是什么?
在一个变化过程中有两个变量x和y,
如果对于x的每一个值,y都有唯一的值
与它对应. 那么就说y是x的函数,其中x
叫做自变量.
2.初中学过哪些函数?
示例1:一枚炮弹发射后,经过26s落到
地面击中目标. 炮弹的射高为845m,且
炮弹距地面的高度h (单位:m)随时间t
(单位:s)变化的规律是h=130t-5t2.
新课
示例2:近几十年来,大气层中的臭氧迅
速减少,因而出现了臭氧层空沿问题. 下
图中的曲线显示了南极上空臭氧层空洞
的面积从1979~2001年的变化情况.
示例3:国际上常用恩格尔系数反映一个
国家人民生活质量的高低,恩格尔系数
越低,生活质量越高,下表中恩格尔系
数随时间(年)变化的情况表明,“八五”
计划以来,我国城镇居民的生活质量发
生了显著变化.
“八五”计划以来我国城镇居民
恩格尔系数变化情况
1. 定义
形成概念
设A、B是非空的数集,如果按照某
个确定的对应关系f,使对于集合A中的
任意一个数x,在集合B中都有唯一确定
的数 f(x)和它对应,那么就称f:A→B为
从集合A到集合B的一个函数,
1. 定义
形成概念
设A、B是非空的数集,如果按照某
个确定的对应关系f,使对于集合A中的
任意一个数x,在集合B中都有唯一确定
的数 f(x)和它对应,那么就称f:A→B为
从集合A到集合B的一个函数,记作:
y=f (x),xA
1. 定义
形成概念
其中,x叫做自变量,
1. 定义
其中,x叫做自变量,x的取值范围
A叫做函数的定义域;
1. 定义
其中,x叫做自变量,x的取值范围
A叫做函数的定义域;
与x值相对应的y的值叫做函数值,
1. 定义
其中,x叫做自变量,x的取值范围
A叫做函数的定义域;
与x值相对应的y的值叫做函数值,
函数值的集合{ f (x) | x A}叫做函数
的值域.
1. 定义
例1若物体以速度v作匀速直线运动,则
物体通过的距离S与经过的时间t的关系
是S=vt.
下列例1、例2、例3是否满足函数定义
例2某水库的存水量Q与水深h(指最深处
的水深)如下表:
例3设时间为t,气温为T(℃),自动测温
仪测得某地某日从凌晨0点到半夜24点
的温度曲线如下图.
定义域A;
值域{f(x)|x∈R};
对应法则f.
2. 函数的三要素:
定义域A;
值域{f(x)|x∈R};
对应法则f.
2. 函数的三要素:
(2) f 表示对应法则,不同函数中f 的具
体含义不一样;
函数符号y=f (x) 表示y是x的函数,
f (x)不是表示 f 与x的乘积;
3. 表示函数的方法:
解析式:把常量和表示自变量的字母
用一系列运算符号连接起来,得到的
式子叫做解析式.
列表法:列出表格来表示两个变量之
间的对应关系.
图象法:用图象表示两个变量之间的
对应关系.
⑴ 一次函数f(x)=ax+b(a≠0)
4.已学函数的定义域和值域
4.已学函数的定义域和值域
定义域R,值域R.
⑴ 一次函数f(x)=ax+b(a≠0)
4.已学函数的定义域和值域
定义域R,值域R.
⑴ 一次函数f(x)=ax+b(a≠0)
⑵
4.已学函数的定义域和值域
定义域R,值域R.
定义域{x|x≠0},值域{y|y≠0}.
⑴ 一次函数f(x)=ax+b(a≠0)
⑵
4.已学函数的定义域和值域
⑶二次函数f(x)=ax2+bx+c (a≠0)
4.已学函数的定义域和值域
⑶二次函数f(x)=ax2+bx+c (a≠0)
定义域:R,
4.已学函数的定义域和值域
⑶二次函数f(x)=ax2+bx+c (a≠0)
定义域:R,
值域:
当a>0时,
当a<0时,
例1求下列函数的定义域:
例题讲解
⑶
⑵
⑴
例2已知函数f(x)=3x2-5x+2,求f(3),
⑴
⑵
⑶
⑷
例3
⑴
⑵
⑶
⑷
例3
例4下列各组中的两个函数是否为相同的
函数?
⑶
⑵
⑴
例4下列各组中的两个函数是否为相同的
函数?
(定义域不同)
⑶
⑵
⑴
例4下列各组中的两个函数是否为相同的
函数?
(定义域不同)
⑶
⑵
⑴
(定义域不同)
例4下列各组中的两个函数是否为相同的
函数?
(定义域不同)
(定义域、值域都不同)
⑶
⑵
⑴
(定义域不同)