登录 / 注册
首页>人教版初中数学九年级下册>解直角三角形
  • 资料信息
  • 科目: 

    人教版初中数学九年级下册 - 解直角三角形

  • 格式:  PPT
  • 大小:  1.03M    24张
  • 时间:  2015-09

28.2解直角三角形(1)课件

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
28.2解直角三角形(1)课件28.2解直角三角形(1)课件
§28.2 解直角三角形(1)
解决有关比萨斜塔倾斜的问题.
设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m问:倾斜角∠A是多少?
所以∠A≈5.48°

A
B
C
问题1.直角三角形中,除直角外还有几个元素呢?
解直角三角形
一,解直角三角形定义:在直角三角形中,由除直角外的已知元素求其他未知元素的过程.
这五个元素有什么关系呢?
(2)两锐角之间的关系
∠A+∠B=90°
(3)边角之间的关系
(1)三边之间的关系
(勾股定理)
关系:
问题2:知道5个元素当中几个,就可以求其他元素?

1.已知两条边:

2已知一边一角:
⑴两直角边
⑵一直角边和斜边
⑴一直角边和一锐角
⑵ 斜边和一锐角
猜想归纳,解直角三角形的类型:
例1 如图,在Rt△ABC中,∠C=90°,
解这个直角三角形
解:
例2 如图,在Rt△ABC中,∠B=30°,b=20,解这个直角三角形(精确到0.1)
解:∠A=90°-∠B=90°-35°=55°
你还有其他方法求出c吗?
变式练习1 如图,在Rt△ABC中,∠C=90°,AC=6, ∠BAC的平分线 ,求直角三角形的面积。
6
2如图,在电线杆上离地面高度5m的C点处引两根拉线固定电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示)
解直角
三角形
∠A+ ∠ B=90°
a2+b2=c2
三角函数
关系式
类型
两边
一边一角
解直角三角形:
由已知元素求未知元素的过程
直角三角形中,
在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(1)a = 30 , b = 20 ;
练习
解:根据勾股定理
在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(2) ∠B=72°,c = 14.
解:
解决有关比萨斜塔倾斜的问题.
设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m
所以∠A≈5°28′
可以求出2001年纠偏后塔身中心线与垂直中心线的夹角.
你愿意试着计算一下吗?
A
B
C
1. 如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)
∴∠BED=∠ABD-∠D=90°
答:开挖点E离点D 332.8m正好能使A,C,E成一直线.
解:要使A、C、E在同一直线上,则 ∠ABD是 △BDE 的一个外角
2. 如图所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?
3. 如图,太阳光与地面成60度角,一棵倾斜的大树AB与地面成30度角,这时测得大树在地面上的影长为10m,请你求出大树的高.
10
AB的长
D
(2)两锐角之间的关系
∠A+∠B=90°
(3)边角之间的关系
(1)三边之间的关系
(勾股定理)
在解直角三角形的过程中,一般要用到下面一些关系:
复习
30°、45°、60°角的正弦值、余弦值和正切值如下表:
对于sinα与tanα,角度越大,函数值也越大;(带正)
对于cosα,角度越大,函数值越小。
问题: 要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角a一般要满足50°≤a≤75°.现有一个长6m的梯子,问:
(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)?
(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角a等于多少(精确到1°)?这时人是否能够安全使用这个梯子?
这样的问题怎么解决
问题(1)可以归结为:在Rt △ABC中,已知∠A=75°,斜边AB=6,求∠A的对边BC的长.
问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的距离是使用这个梯子所能攀到的最大高度.
因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m
所以 BC≈6×0.97≈5.8
由计算器求得 sin75°≈0.97
由 得
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6,求锐角a的度数
由于
利用计算器求得
a≈66°
因此当梯子底墙距离墙面2.4m时,梯子与地面
所成的角大约是66°
由50°<66°<75°可知,这时使用这个梯子是安全的.
在图中的Rt△ABC中,
(1)根据∠A=75°,斜边AB=6,你能求出这个直角三角形的其他元素吗?

6
=75°
在图中的Rt△ABC中,
(2)根据AC=2.4,斜边AB=6,你能求出这个直角三角形的其他元素吗?

6
2.4