登录 / 注册
首页>人教版初中数学九年级下册>解直角三角形
  • 资料信息
  • 科目: 

    人教版初中数学九年级下册 - 解直角三角形

  • 格式:  PPT
  • 大小:  1.22M    31张
  • 时间:  2015-09

28.2解直角三角形2 (2)

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
28.2解直角三角形2 (2)28.2解直角三角形2 (2)
28.2 解直角三角形(2)
仰角和俯角
在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.
例:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高?
α=30°
β=60°
120
A
B
C
D
操场里有一个旗杆,小明站在离旗杆底部10米的D处,仰视旗杆顶端A,仰角为34°,俯视旗杆底端B,俯角为18°,求旗杆的高度(精确到0.1米).
10米
?
你能计算出的吗?
B
F
D
E
操场里有一个旗杆,小明站在离旗杆底部10米的D处,仰视旗杆顶端A,仰角为34°,俯视旗杆底端B,俯角为18°,求旗杆的高度(精确到0.1米).
10米
?
B
F
D
E
能画出怎样的图形?
A
操场里有一个旗杆,小明站在离旗杆底部10米的D处,仰视旗杆顶端A,仰角为34°,俯视旗杆底端B,俯角为18°,求旗杆的高度(精确到0.1米).
10米
?
B
F
D
E
sin180=0.31
cos180=0.95
sin340=0.56
cos340=0.83
tan180=0.32
tan340=0.67
如图,有两建筑物,在甲建筑物上从A到E点挂一长为30米的宣传条幅,在乙建筑物的顶部D点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°.求甲、乙两建筑物之间的水平距离BC
例5 如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?
解:如图 ,在Rt△APC中,
PC=PA·cos(90°-65°)
=80×cos25°
≈80×0.91
=72.8
在Rt△BPC中,∠B=34°
当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.
65°
34°
P
B
C
A
利用解直角三角形的知识解决实际问题的一般过程是:
(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
船有触礁的危险吗?
一艘渔船正以30海里/小时的速度由西向东追赶鱼群,在A处看见小岛C在船北偏东60°的方向上;40min后,渔船行驶到B处,此时小岛C在船北偏东30°的方向上。已知以小岛C为中心,10海里为半径的范围内是多暗礁的危险区。这渔船如果继续向东追赶鱼群,有没有进入危险区的可能?
C
600
A
B
300
一艘渔船正以30海里/小时的速度由西向东追赶鱼群,在A处看见小岛C在船北偏东60°的方向上;40min后,渔船行驶到B处,此时小岛C在船北偏东30°的方向上。已知以小岛C为中心,10海里为半径的范围内是多暗礁的危险区。这渔船如果继续向东追赶鱼群,有没有进入危险区的可能?
D
解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角a和大坝的坡面长度l,就能算出h=lsina,但是,当我们要测量如图所示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度l
化整为零,积零为整,化曲为直,以直代曲的解决问题的策略
与测坝高相比,测山高的困难在于;坝坡是“直”的,而山坡是“曲”的,怎样解决这样的问题呢?
拓广与探究
我们设法“化曲为直,以直代曲”. 我们可以把山坡“化整为零”地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长l1,测出相应的仰角a1,这样就可以算出这段山坡的高度h1=l1sina1.
在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,…,hn,然后我们再“积零为整”,把h1,h2,…,hn相加,于是得到山高h.
以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容.
1. 海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向到航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏到30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?
B
A
D
F
解:由点A作BD的垂线
交BD的延长线于点F,垂足为F,∠AFD=90°
由题意图示可知∠DAF=30°
设DF= x , AD=2x
则在Rt△ADF中,根据勾股定理
在Rt△ABF中,
解得x=6
10.4 > 8没有触礁危险
练习
30°
60°
2. 如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:
(1)坡角a和β;
(2)坝顶宽AD和斜坡AB的长(精确到0.1m)
解:(1)在Rt△AFB中,∠AFB=90°
在Rt△CDE中,∠CED=90°
3、学校操场上有一根旗杆,上面有一根开旗用的绳子(绳子足够长),王同学拿了一把卷尺,并且向数学老师借了一把含300的三角板去度量旗杆的高度。
(1)若王同学将旗杆上绳子拉成仰角为600,如图用卷尺量得BC=4米,则旗杆AB的高多少?
(2)若王同学分别在点C、点D处将旗杆上绳子分别拉成仰角为600、300,如图量出CD=8米,你能求出旗杆AB的长吗?
30°
例:我市某住宅小区高层建筑均为正南正北方向,楼高都是16米,某时太阳光线与水平线的夹角为30 °,如果南北两楼间隔仅有20米,试求:(1)此时南楼的影子落在北楼上有多高?(2)要使南楼的影子刚好落在北楼的墙脚,两楼间的距离应当是多少米?
例:我市某住宅小区高层建筑均为正南正北向,楼高都是16米,某时太阳光线与水平线的夹角为30 °,如果南北两楼间隔仅有20米,试求:(1)此时南楼的影子落在北楼上有多高?(2)要使南楼的影子刚好落在北楼的墙脚,两楼间的距离应当是多少米?
例:我市某住宅小区高层建筑均为正南正北向,楼高都是16米,某时太阳光线与水平线的夹角为30 °,如果南北两楼间隔仅有20米,试求:(1)此时南楼的影子落在北楼上有多高?(2)要使南楼的影子刚好落在北楼的墙脚,两楼间的距离应当是多少米?
30°
例:我市某住宅小区高层建筑均为正南正北向,楼高都是16米,某时太阳光线与水平线的夹角为30 °,如果南北两楼间隔仅有20米,试求:(1)此时南楼的影子落在北楼上有多高?(2)要使南楼的影子刚好落在北楼的墙脚,两楼间的距离应当是多少米?
变形1为了响应市人民政府“形象重于生命”的号召,在甲建筑物上从A点到E点挂一长为30米的宣传条幅,在乙建筑物的顶部D点测得条幅顶端A点的仰角为60°,测得条幅底端E点的俯角为45°。求底部不能直接到达的甲、乙两建筑物之间的水平距离BC。
A
B
D
C
E
突破措施:建立基本模型 ;添设辅助线时,以不破坏特殊角的完整性为准则.
变形1为了响应市人民政府“形象重于生命”的号召,在甲建筑物上从A点到E点挂一长为30米的宣传条幅,在乙建筑物的顶部D点测得条幅顶端A点的仰角为60°,测得条幅底端E点的俯角为45°。求底部不能直接到达的甲、乙两建筑物之间的水平距离BC。
A
B
D
C
E
A
D
E
F
变形2:如图楼AB和楼CD的水平距离为80米,从楼顶A处测得楼顶C处的俯角为45°,测得楼底D处的俯角为60°,试求两楼高各为多少?
突破措施:建立基本模型
A
B
C
D
变形2:如图楼AB和楼CD的水平距离为80米,从楼顶A处测得楼顶C处的俯角为45°,测得楼底D处的俯角为60°,试求两楼高各为多少?
A
B
C
D
E
变形2:如图楼AB和楼CD的水平距离为80米,从楼顶A处测得楼顶C处的俯角为45°,测得楼底D处的俯角为60°,试求两楼高各为多少?
A
B
C
D
E
利用解直角三角形的知识解决实际问题的一般过程是:
(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
1、在山脚C处测得山顶A的仰角为45°。问题如下:(1)沿着水平地面向前300米到达D点,在D点测得山顶A的仰角为600 , 求山高AB。
D
x
1、在山脚C处测得山顶A的仰角为450。问题如下:

变式: 沿着坡角为30 °的斜坡前进300米到达D点,在D点测得山顶A的仰角为600 ,求山高AB。
D
E
F
x
x
2、在山顶上处D有一铁塔,在塔顶B处测得地面上一点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已知塔高BD=30米,求山高CD。
3、建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角为50°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m)
40
4、(2007年昆明)如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为450,楼底D的俯角为300,求楼CD的高?(结果保留根号)