以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
27.3 位似(第2课时)
在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.
如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为 ,把线段AB缩小,观察对应点之间坐标的变化,你有什么发现?
A
B
A'
B'
A〞
B〞
位似变换后A,B的对应点为A ' ( , ),B'( , );A"( , ),B" ( , ).
2
1
2
0
- 2
- 1
- 2
0
如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
A
B
C
位似变换后A,B,C的对应点为
A '( , ),B ' ( , ),C ' ( , );
A" ( , ),B" ( , ),C" ( , ).
4
6
4
2
12
4
-4
-6
-4
-2
-4
-12
A'
B'
C'
A"
B"
C"
在平面直角坐标系中,如果位似变换是以原点为位似中心,
相似比为k,那么位似图形对应点的坐标的比等于k或-k.
例 如图,四边形ABCD的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为 的位似图形.
分析:问题的关键是要确定位似图形各个顶点的坐标.根据前面的规律,点A的对应点A‘的坐标为 ,即(-3,3).类似地,可以确定其他顶点的坐标.
解:如图,利用位似变换中对应点的坐标的变化规律.分别取点
A'( , ),B ' ( , ),
C ' ( , ),D'( , ).
A
B
C
D
A'
B'
C'
D'
- 3
3
- 4
1
-2
0
-1
2
依次连接点A'B'C'D'就是要求的四边形ABCD的位似图形.
练习
1. 如图表示△AOB和把它缩小后得到的△COD,求它们的相似比.
点D的横坐标为2
点B的横坐标为5
相似比为
2. 如图,△ABC三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.
A
B
C
解:
A'( , ),B ' ( , ),C ' ( , ),
4
- 4
- 10
8
-4
10
A" ( , ),B" ( , ),C" ( , ),
4
- 4
- 8
10
-10
4
A'
B '
C '
A"
B"
C"
至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗?