登录 / 注册
首页>人教版初中数学九年级下册>27.3 位似
  • 资料信息
  • 科目: 

    人教版初中数学九年级下册 - 27.3 位似

  • 格式:  PPT
  • 大小:  3.02M    25张
  • 时间:  2015-09

同类资源

27.3位似(2)
大小:943K
27.3位似(1)
大小:2.52M
九年级数学上册_27.3_位似课件_新人教版
大小:1.45M
27.3_位似(1)(经典PPT)
大小:3.81M
27.3_位似 (1)
大小:437K

27.3_位似_课件2

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
27.3_位似_课件227.3_位似_课件2
27.3 位似
义务教育课程标准实验教科书
九年级 上册
例如,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上(如图显示了它工作的原理).在照相馆中,摄影师通过照相机,把人物的形象缩小在底片上.
这样的放大缩小,没有改变图形形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和满意的照片.
在日常生活中,我们经常见到这样一类相似的图形,
活动1 观察
图中有多边形相似吗?如果有,那么这种相似有什么特征?
图中每幅图中的两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心
O
O
O
2. 分别在线段OA、OB、OC、OD上取点A'、B'、C'、D',

使得
3. 顺次连接点A'、B'、C'、D',所得四边形A'B'C'D'就是所要求的图形.
O
D
A
B
C
A'
B'
C'
D'
利用位似,可以将一个图形放大或缩小.
例如,要把四边形ABCD缩小到原来的1/2,
1. 在四边形外任选一点O(如图),连接OA,OB,OC,OD
对于上面的问题,还有其他方法吗?
O
D
A
B
C
A'
B'
C'
D'
O
D
A
B
C
画位似图形通常都有 两个
如果在四边形外任选一个点O,分别在OA、OB、OC、OD的反向延长线上取A' ,B' 、C' 、D' ,使得
呢?如果点O取在四边形ABCD内部呢?

分别画出这时得到的图形.
2. 如图,以O为位似中心,将△ABC放大为原来的两倍.
O
A
B
C
①作射线OA 、OB 、 OC
②分别在OA、OB 、OC 上取点A' 、B' 、C' 使得
③顺次连结A' 、B' 、C' 就是所要求图形
A'
B'
C'
判断下面的正方形是不是位似图形?
(1)
不是
A
C
D
B
F
E
G
显然,位似图形是相似图形的特殊情形.相似图形不一定是位似图形,可位似图形一定是相似图形
思考:位似图形有何性质?
2. 位似图形的性质
性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.
若△ABC与△A’B’C’的相似比为:1:2,则OA:OA’=( )。
O
A
A’
B
C
B’
C’
1:2
O
.
A
B
C
A'
C’
B’
.
1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长扩大到原来的两倍.
OA:OA’ =OB:OB’ =OC:OC’= 1:2
思考:还有没其他作法?
O
.
A
B
A'
C’
B’
C
如果位似中心跑到三角形内部呢?
A
C
B
O
A
B
A’
C’
B’
C
O
以0为中心把△ABC
缩小为原来的一半。
在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.
如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为 ,把线段AB缩小,观察对应点之间坐标的变化,你有什么发现?
位似变换后A,B的对应点为A ' ( , ),B'( , );A"( , ),B" ( , ).
2
1
2
0
- 2
- 1
- 2
0
横、纵坐标都乘以1/3
x
y
o
在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2画它的位似图形.
B
A
C
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )
放大后对应点的坐标分别是多少?
B'
A'
C'
探索2:
还有其他办法吗?
2
4
6
12
1
3
6
2
4
横、纵坐标都乘以2
如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
A
B
C
位似变换后A,B,C的对应点为
A '( , ),B ' ( , ),C ' ( , );
A" ( , ),B" ( , ),C" ( , ).
4
6
4
2
12
4
-4
-6
-4
-2
-4
-12
A'
B'
C'
A"
B"
C"
横、纵坐标都乘以2或-2
在平面直角坐标系中,如果位似变换是以原点为位似中心,
相似比为k,那么位似图形对应点的坐标的比等于k或-k.
横、纵坐标都乘以K或-K
例 如图,四边形ABCD的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为 的位似图形.
分析:问题的关键是要确定位似图形各个顶点的坐标.根据前面的规律,点A的对应点A‘的坐标为 ,即(-3,3).类似地,可以确定其他顶点的坐标.
解:如图,利用位似变换中对应点的坐标的变化规律.分别取点
A'( , ),B ' ( , ),
C ' ( , ),D'( , ).
A
B
C
D
A'
B'
C'
D'
- 3
3
- 4
1
-2
0
-1
2
依次连接点A'B'C'D'就是要求的四边形ABCD的位似图形.
x
y
o
例题.在平面直角坐标系中, 四边形ABCD的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为1/2的位似图形.
A′( -3,3 ), B′( -4,1 ), C′( -2,0 ), D′( -1,2 )
A′
B′
C′
D′
你还有其他办法吗?试试看.
横、纵坐标都乘以1/2或-1/2
练习
1. 如图表示△AOB和把它缩小后得到的△COD,求它们的相似比.
点D的横坐标为2
点B的横坐标为5
相似比为
相似比也可用横坐标比横坐标或纵坐标比纵坐标
2. 如图,△ABC三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.
A
B
C
解:
A'( , ),B ' ( , ),C ' ( , ),
4
- 4
- 10
8
-4
10
A" ( , ),B" ( , ),C" ( , ),
4
- 4
- 8
10
-10
4
A'
B '
C '
A"
B"
C"
横、纵坐标都乘以2或-2
至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗?
不经历风雨,怎么见彩虹
没有人能随随便便便成功!
同学们努力吧!