以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
世界著名的意大利比萨斜塔,建于公元1173年,为8层圆柱形建筑,全部用白色大理石砌成塔高54.5米.
创设情境,复习导入
目前,它与地面所成的较小的角
为∠1=85º
2
3
5.3 平行线的性质
5.3.1 平行线的性质
复习回顾
平行线的判定方法是什么?
反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?
猜一猜∠1和∠2相等吗?
交流合作,探索发现
65°
65°
c
a
b
1
2
量一量
a
c
1
拼一拼
∠1=∠2
是不是任意一条直线去截平行线a、b
所得的同位角都相等呢?
看一看
想一想
两直线平行,同位角相等.
平行线的性质1
结论
两条平行线被第三条直线所截,
同位角相等.
∴∠1=∠2.
∵a∥b,
简写为:
符号语言:
如图:已知a//b,那么2与3相等吗?
为什么?
解∵a∥b(已知),
∴∠1=∠2(两直线平行,
同位角相等).
又∵ ∠1=∠3(对顶角相等),
∴ ∠2=∠3(等量代换).
两直线平行,内错角相等.
平行线的性质2
结论
两条平行线被第三条直线所截,
内错角相等.
∴∠2=∠3.
∵a∥b,
符号语言:
简写为:
解: ∵a//b (已知),
如图,已知a//b,那么2与4有什么关系呢?为什么?
∴ 1= 2(两直线平行, 同位角相等).
∵ 1+ 4=180°(邻补角定义),
∴ 2+ 4=180°(等量代换).
两直线平行,同旁内角互补.
平行线的性质3
结论
两条平行线被第三条直线所截,
同旁内角互补.
∴ 2+ 4=180°.
∵a∥b,
符号语言:
简写为:
例 如图,已知直线a∥b,
∠1 = 500, 求∠2的度数.
a
b
c
1
2
∴∠ 2= 500 (等量代换).
解:∵ a∥b(已知),
∴∠ 1= ∠ 2
(两直线平行,内错角相等).
又∵∠ 1 = 500 (已知),
变式1:已知条件不变,求∠3,∠4的度数?
师生互动,典例示范
变式2:已知∠3 =∠4,∠1=47°,求∠2的度数?
∴∠ 2= 470
( )
解:∵ ∠3 =∠4( )
∴a∥b
( )
又∵∠ 1 = 470 ( )
c
1
2
3
4
a
b
d
两直线平行,同位角相等
同位角相等,两直线平行
已知
已知
如图在四边形ABCD中,已知AB∥CD,
∠B = 600.
①求∠C的度数;
②由已知条件能否求得∠A的度数?
A
B
C
D
解: ① ∵ AB∥CD(已知),
∴ ∠B + ∠C= 1800(两直线平行,同旁内角互补).
又∵ ∠B = 600 (已知),
∴∠C = 1200 (等式的性质).
②根据题目的已知条件,
无法求出∠A的度数.
施展你的才能
如图,在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?
解:
∵AB∥CD (已知),
∴∠B=∠C
(两直线平行,
内错角相等).
又∵∠B=142° (已知),
∴∠B=∠C=142°
(等量代换).
展示你的才华
D
F
A
小明在纸上画了一个角∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法可以测出∠A的度数?
挑战无处不在
1
目前,它与地面所成的较小的角
为∠1=85º
两直线平行
同位角相等
内错角相等
同旁内角互补
线的关系
角的关系
判定
性质
平行线的性质和平行线的判定方法的 区 别 与 联 系
小结
5.3.2 命题、定理
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?
1、对顶角相等;
2、画一个角等于已知角;
3、两直线平行,同位角相等;
4、a、b两条直线平行吗?
5、温柔的李明明;
6、玫瑰花是动物;
7、若a2=4,求a的值;
8、若a2=b2,则a=b。
否
是
否
否
是
否
是
是
√
对事情作了判断的语句是否正确?
√
×
练习
×
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
判断一件事情的语句叫做命题。
注意:
1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
命题是由题设(或条件)和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。
两直线平行, 同位角相等。
题设(条件)
结论
命题一般都写成“如果…,那么…”的形式。
“如果”后接的部分是题设,“那么”后接的部分是结论。
如命题:熊猫没有翅膀。改写为:
如果这个动物是熊猫,那么它就没有翅膀。
注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。
指出下列各命题的题设和结论,并改写成“如果……那么……”的形式。
练习
1、对顶角相等;
2、内错角相等;
3、两平线被第三直线所截,同位角相等;
4、3<2;
5、同平行于一直线的两直线平行;
6、直角三角形的两个锐角互余;
7、等角的补角相等;
8、正数与负数的和为0。
有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立。
正确的命题叫真命题,错误的命题叫假命题。
如命题:“如果两个角互补,那么它们是邻补角”就是一个错误的命题。
如命题:“如果一个数能被4整除,那么它也能被2整除”就是一个正确的命题。
确定一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举反例等方法。
下列句子哪些是命题?是命题的,指出是真命题还是假命题?
1、猪有四只脚;
2、内错角相等;
3、画一条直线;
4、四边形是正方形;
5、你的作业做完了吗?
6、同位角相等,两直线平行;
7、对顶角相等;
8、同垂直于一直线的两直线平行;
9、过点P画线段MN的垂线;
10、x>2
是
真命题
否
是
假命题
是
假命题
否
是
真命题
是
真命题
是
假命题
否
练习
否
1、数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。
2、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。
公理和定理都可作为判断其他命题真假的依据。
公理举例:
经过两点有且只有一条直线。
2、线段公理:
两点的所有连线中,线段最短。
4、平行线判定公理:
同位角相等,两直线平行。
5、平行线性质公理:
两直线平行,同位角相等。
1、直线公理:
3、平行公理:
经过直线外一点,有且只有一条直线与已知直线平行。
同角或等角的补角相等。
2、余角的性质:
同角或等角的余角相等。
4、垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
5、平行公理的推论:
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
1、补角的性质:
3、对顶角的性质:
对顶角相等。
②垂线段最短。
定理举例:
内错角相等,两直线平行。
同旁内角互补,两直线平行。
6、平行线的判定定理:
7、平行线的性质定理:
两直线平行,内错角相等。
两直线平行,同旁内角互补。
定理举例:
课堂小结
1、命题:判断一件事情的语句叫命题。
2、公理:人们长期以来在实践中总结出来的,并作为判断其他命题真假的根据的命题,叫做公理。
3、定理:经过推理论证为正确的命题叫定理。也可作为继续推理的依据。
4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推理的方法证明(公理和定理都是真命题);
判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例。
(1)正确的命题称为真命题,错误的命题称为假命题。
(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果…,那么…”的形式。