登录 / 注册
首页>人教版初中数学九年级上册>第二十二章 二次函数
  • 资料信息
  • 科目: 

    人教版初中数学九年级上册 - 第二十二章 二次函数

  • 格式:  PPT
  • 大小:  1.58M    13张
  • 时间:  2017-08

22.1 二次函数的图像和性质 课件37

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
22.1 二次函数的图像和性质 课件37
二次函数y=ax2的图象和性质
初三数学
x
y
一. 平面直角坐标系:

1. 有关概念:
x(横轴)
y(纵轴)
o
第一象限
第二象限
第三象限
第四象限
P
a
b
(a,b)
2. 平面内点的坐标:
3. 坐标平面内的点与有序
实数对是:
一一对应.
坐标平面内的任意一点M,都有唯一一对有序实数(x,y)与它对应;
任意一对有序实数(x,y),在坐标平面内都有唯一的点M与它对应.
4. 点的位置及其坐标特征:

①.各象限内的点:

②.各坐标轴上的点:

③.各象限角平分线上的点:

④.对称于坐标轴的两点:

⑤.对称于原点的两点:
x
y
o
(+,+)
(-,+)
(-,-)
(+,-)
P(a,0)
Q(0,b)
P(a,a)
Q(b,-b)
M(a,b)
N(a,-b)
A(x,y)
B(-x,y)
C(m,n)
D(-m,-n)
函数图象画法
列表
描点
连线
0
0.25
1
2.25
4
0.25
1
2.25
4
描点法
用光滑曲线连结时要
自左向右顺次连结
用光滑曲线连结时要
自左向右顺次连结
用光滑曲线连结时要
自左向右顺次连结
用光滑曲线连结时要
自左向右顺次连结
用光滑曲线连结时要
自左向右顺次连结
用光滑曲线连结时要
自左向右顺次连结
用光滑曲线连结时要
自左向右顺次连结
用光滑曲线连结时要
自左向右顺次连结
用光滑曲线连结时要
自左向右顺次连结
0
-0.25
-1
-2.25
-4
-0.25
-1
-2.25
-4
注意:列表时自变量
取值要均匀和对称。
0
0.5
2
4.5
8
0.5
2
4.5
8
列表参考
0
0.5
2
4.5
8
0.5
2
4.5
8
0
1.5
-6
1.5
-6
二次函数y=ax2的图象形如物体抛射时
所经过的路线,我们把它叫做抛物线。
这条抛物线关于y轴
对称,y轴就是它的
对称轴。
这条抛物线关于y轴
对称,y轴就是它的
对称轴。
这条抛物线关于y轴
对称,y轴就是它的
对称轴。
对称轴与抛物线的交点
叫做抛物线的顶点。
对称轴与抛物线的交点
叫做抛物线的顶点。
对称轴与抛物线的交点
叫做抛物线的顶点。
(0,0)
(0,0)
y轴
y轴
在x轴的上方(除顶点外)
在x轴的下方(除顶点外)
向上
向下
当x=0时,最小值为0。
当x=0时,最大值为0。
二次函数y=ax2的性质
1、顶点坐标与对称轴
2、位置与开口方向
3、增减性与极值
2、练习2
3、想一想
在同一坐标系内,抛物线y=x2与抛物线
y= -x2的位置有什么关系? 如果在同一坐标系内
画函数y=ax2与y= -ax2的图象,怎样画才简便?
4、练习4
动画演示
当a>0时,在对称轴的
左侧,y随着x的增大而
减小。
当a>0时,在对称轴的
右侧,y随着x的增大而
增大。
当a<0时,在对称轴的
左侧,y随着x的增大而
增大。
当a<0时,在对称轴的
右侧,y随着x的增大而
减小。
1、抛物线y=ax2的顶点是原点,对称轴是y轴。
2、当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且
向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且
向下无限伸展。
3、当a>0时,在对称轴的左侧,y随着x的增大而减小;
在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。
当a<0时,在对称轴的左侧,y随着x的增大而增大;
在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大。
二次函数y=ax2的性质
2、根据左边已画好的函数图象填空:
(1)抛物线y=2x2的顶点坐标是 ,
对称轴是 ,在 侧,
y随着x的增大而增大;在 侧,
y随着x的增大而减小,当x= 时,
函数y的值最小,最小值是 ,抛物
线y=2x2在x轴的 方(除顶点外)。
(2)抛物线 在x轴的 方(除顶点外),在对称轴的
左侧,y随着x的 ;在对称轴的右侧,y随着x的
,当x=0时,函数y的值最大,最大值是 ,
当x 0时,y<0.
(0,0)
y轴
对称轴的右
对称轴的左
0
0


增大而增大
增大而减小
0
1、已知抛物线y=ax2经过点A(-2,-8)。
(1)求此抛物线的函数解析式;
(2)判断点B(-1,- 4)是否在此抛物线上。
(3)求出此抛物线上纵坐标为-6的点的坐标。
解(1)把(-2,-8)代入y=ax2,得
-8=a(-2)2,解出a= -2,所求函数解析式为
y= -2x2.
y=-2x2
再见