25.3 用 频 率 估 计 概 率
必然事件
不可能事件
可能性
随机事件(不确定事件)
回顾
必然事件发生的概率为1,
记作P(必然事件)=1;
不可能事件发生的概率为0,
记作P(不可能事件)=0;
随机事件(不确定事件)发生的概率介于0~1之 间,即0
如果A为随机事件(不确定事件),
那么0
概率定义: 我们把刻画事件发生的可能性 大小的数值,称为事件发生的概率.
用列举法求概率的条件是什么?
(1)试验的所有结果是有限个(n)
(2)各种结果的可能性相等.
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用 的方式得出概率,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
一 . 利用频率估计概率
什么叫频率?
在实验中,每个对象出现的次数与总次数的比值叫频率
在重复抛掷一枚硬币时,“正面向上”的频率在0.5左右摆动。随着抛掷次数的增加,一般的,频率呈现一定的稳定性:在0.5左右摆动的幅度会越来越小。
这时,我们称“正面向上”的频率稳定于0.5.
思考:随着抛掷次数的增加,“正面向上”的频率的变化趋势有何变化?
事实上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性。
瑞士数学家雅各布·伯努利(1654-1705被公认为是概率论的先驱之一,他最早阐明了随着试验次数的增加,频率稳定在概率附近。
归纳:
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么事件A发生的概率P(A)=p。
用频率估计的概率可能小于0吗?可能大于1吗?
例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:
(1)计算表中各次比赛进球的频率;
(2)这位运动员投篮一次,进球的概率约为多少?
0.75
0.8
0.75
0.78
0.75
0.7
0.75
练习:
下表记录了一名球员在罚球线上的投篮结果。
(1)计算表中的投中频率(精确到0.01);
(2)这个球员投篮一次,投中的概率大约是多少?(精确到0.1)
0.56
0.60
0.52
0.52
0.492
0.507
0.502
约为0.5
例2 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:
(1) 计算并完成表格:
(2) 请估计,当很大时,频率将会接近多少?
(3) 转动该转盘一次,获得铅笔的概率约是多少?
(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)
解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;
(2)0.69;
(3)0.69;
(4)0.69×360°≈248°.
评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.
基础训练
一、选一选(请将唯一正确答案的代号填入题后的括号内)
1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )
A.90个 B.24个 C.70个 D.32个
2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( )
A.
B. C. D.
B
B
3.下列说法正确的是( ).
A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;
B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;
C.彩票中奖的机会是1%,买100张一定会中奖;
D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.
B
5.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).
A.10粒 B.160粒 C.450粒 D.500粒
6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是 这个的含义是( )
A.只发出5份调查卷,其中三份是喜欢足球的答卷;
B.在答卷中,喜欢足球的答卷与总问卷的比为3∶8;
C.在答卷中,喜欢足球的答卷占总答卷的
D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.
;
C
C
某林业部门要考查某种幼树在一定条件下的移植成活率,应
采用什么具体做法?
观察在各次试验中得到的幼树成活的频率,谈谈
你的看法.
成活的频率
0.8
0.94
0.923
0.883
0.905
0.897
是实际问题中的一种概率,可理解为成活的概率.
由下表可以发现,幼树移植成活的频率在____左右摆动,
并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为_____.
0.9
0.9
成活的频率
0.8
0.94
0.923
0.883
0.905
0.897
由下表可以发现,幼树移植成活的频率在____左右摆动,
并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为_____.
0.9
0.9
成活的频率
0.8
0.94
0.923
0.883
0.905
0.897
林业部门种植了该幼树1000棵,估计能成活_______棵.
900
问题2 某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在表中,请你帮忙完成此表.
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
从上表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.
思 考
0.1
稳定
0.9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
解得 x≈2.8
因此,出售柑橘时每千克大约定价为2.8元可获利润5 000元.
根据估计的概率可以知道,在10 000千克柑橘中完好柑橘的质量为 10 000×0.9=9 000千克,完好柑橘的实际成本为
为简单起见,我们能否直接把表中500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的频率?能否看作柑橘损坏的概率?
应该可以的
因为500千克柑橘损坏51.54千克,损坏率是0.103,可以近似的估算是柑橘的损坏概率
某农科所在相同条件下做了某作物种子发芽率的试验,结果如下表所示:
一般地,1 000千克种子中大约有多少是不能发芽的?
练 习
0.94
0.94
0.94
0.85
0.87
0.88
0.89
0.90
0.90
0.98
一般地,1 000千克种子中大约有多少是不能发芽的?
解:这批种子的发芽的频率稳定在0.9即种子发芽的概率为90%,不发芽的概率为0.1, 不发芽的概率为10%
所以: 1000×10%=100千克
1000千克种子大约有100千克是不能发芽的.
概率伴随着我你他
1.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?
解:
根据概率的意义,可以认为其概率大约等于250/2000=0.125.
该镇约有100000×0.125=12500人看中央电视台的早间新闻.
2.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里约有鲤鱼_______尾,鲢鱼_______尾.
310
270
3.动物学家通过大量的调查估计出,某种动物活到20岁
的概率为0.8,活到25岁的概率是0.5,活到30岁的概率
是0.3.现年20岁的这种动物活到25岁的概率为多少?现
年25岁的这种动物活到30岁的概率为多少?
4.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生,并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下:
(1)随着调查次数的增加,红色的频率如何变化?
(2)你能估计调查到10 000名同学时,红色的频率是多少吗?
估计调查到10 000名同学时,红色的频率大约仍是0.4左右.
随着调查次数的增加,红色的频率基本稳定在0.4左右.
(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?
.
红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:1:2
如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有150次是落在不规则图形内.
(1)你能估计出掷中不规则图形的概率吗?
(2)若该长方形的面积为150平方米,试估计不规则图形的面积.
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想:
用样本去估计总体
用频率去估计概率
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证一下你事先估计是否正确?
你能估计图钉尖朝上的概率吗?
大家都来做一做