以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
§27.3 用频率估计概率
复习回顾
1.三种事件发生的概率及表示?
2.一个事件发生的可能性的大小可以用一个数来表示,我们把这个数叫做这个事件发生的概率,一般用P(事件)表示。事件A发生的概率也记为P(A),事件B发生的概率记为P(B) ,依此类推.
3.有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4。现将它们的背面朝上,从中任意摸到一张卡片,则:p (摸到1号卡片)= ;
p (摸到2号卡片)= ;
p (摸到3号卡片)= ;
p (摸到4号卡片)= ;
p (摸到奇数号卡片)= ;
P(摸到偶数号卡片) = .
4.
P(正上方数字是6)= ;
P(正上方数字是1或2)= ;
P(正上方数字是偶数)= 。
返回
2.掷一次骰子,向上的一面数字是6的概率是_______ .
1.某射击运动员射击一次,命中靶心的概率是_______.
命中靶心与未命中靶心发生可能性不相等
或试验的结果不是有限个,怎样计算它的概率呢?
各种结果发生的可能性相等
试验的结果是有限个的
等可能事件
某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?
观察在各次试验中得到的幼树成活的频率,谈谈你的看法.
成活的频率
0.8
0.94
0.923
0.883
0.905
0.897
是实际问题中的一种概率,
可理解为成活的概率.
人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.
由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.
结 论
由下表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为__.
0.9
0.9
成活的频率
0.8
0.94
0.923
0.883
0.905
0.897
由下表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为__.
0.9
0.9
成活的频率
0.8
0.94
0.923
0.883
0.905
0.897
1.林业部门种植了该幼树1000棵,估计能成活_______棵.
2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_____棵.
900
556
完成下表,
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
某水果公司以2元/千克的成本新进了10 000千克柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
利用你得到的结论解答下列问题:
例题
例1.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:
(1)计算表中各个频数.
(2)估计该麦种的发芽概率
0.8
0.95
0.95
0.95
0.951
0.952
0.94
0.92
0.9
则估计油菜籽发芽的概率为___
0.9
课堂练习
1.
2.
3.
一个口袋中放有20个球,其中红球6个,白球和黑球个若干个,每个球出了颜色外没有任何区别.
(1)小王通过大量反复实验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在1/4左右,请你估计袋中黑球的个数.
(2)若小王取出的第一个是白球,将它放在桌上,从袋中余下的球中在再任意取一个球,取出红球的概率是多少?
4.某射击运动员在同一条件下练习射击,结果如下表所示:
(1)计算表中击中靶心的各个频率并填入表中.
(2)这个运动员射击一次,击中靶心的概率约是_____.
了解了一种方法-------用多次试验频率
去估计概率
体会了一种思想:
用样本去估计总体
用频率去估计概率
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
课堂小结
1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.
310
270
2.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生,并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下:
(1)随着调查次数的增加,红色的频率如何变化?
(2)你能估计调查到10 000名同学时,红色的频率是多少吗?
估计调查到10 000名同学时,红色的频率大约仍是40%左右.
随着调查次数的增加,红色的频率基本稳定在40%左右.
(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?
红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:1:2 .
3.如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有100次是落在不规则图形内.
(1)你能估计出掷中不规则图形的概率吗?
(2)若该长方形的面积为150,试估计不规则
图形的面积.