登录 / 注册
首页>奥数资源>小学奥数>六年级奥数>ppt课件

小学六年级奥数原创《简便运算》ppt课件免费下载9

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
小学六年级奥数原创《简便运算》ppt课件免费下载9
小学奥数 举一反三
(六年级)
第3讲 简便运算(二)
一、知识要点
计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。
二、精讲精练
【例题1】计算:1234+2341+3412+4123

【思路导航】整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是有

原式=1×1111+2×1111+3×1111+4×1111

=(1+2+3+4)×1111

=10×1111

=11110
二、精讲精练
关口11:

1.23456+34562+45623+56234+62345

2.45678+56784+67845+78456+84567

3.124.68+324.68+524.68+724.68+924.68
二、精讲精练
【例题2】计算:2又4/5×23.4+11.1×57.6+6.54×28

【思路导航】我们可以先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算。所以

原式=2.8×23.4+2.8×65.4+11.1×8×7.2

=2.8×(23.4+65.4)+88.8× 7.2

=2.8×88.8+88.8×7.2

=88.8×(2.8+7.2)

=88.8×10

=888
二、精讲精练
关口12:计算下面各题:

1.99999×77778+33333×66666

2.34.5×76.5-345×6.42-123×1.45

3.77×13+255×999+510
二、精讲精练
例题3】计算(1993×1994-1)/(1993+1992×1994)

【思路导航】仔细观察分子、分母中各数的特点,就会发现分子中1993×1994可变形为1992+1)×1994=1992×1994+1994,同时发现1994-1 = 1993,这样就可以把原式转化成分子与分母相同,从而简化运算。所以

原式=【(1992+1)×1994-1】/(1993+1992×1994)

=(1992×1994+1994-1)/(1993+1992×1994)

=1
二、精讲精练
关口13:计算下面各题:

1.(362+548×361)/(362×548-186)

2.(1988+1989×1987)/(1988×1989-1)

3.(204+584×1991)/(1992×584―380)―1/143
二、精讲精练
【例题4】有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?

【思路导航】这串数中第2000个数是2000^2,而第2001个数是2001^2,它们相差:2001^2-2000^2,即

2001^2-2000^2

=2001×2000-2000^2+2001

=2000×(2001-2000)+2001

=2000+2001

=4001
二、精讲精练
关口14:计算:

1.1991^2-1990^2
2.9999^2+19999
3.999×274+6274
二、精讲精练
【例题5】计算:(9又2/7+7又2/9)÷(5/7+5/9)

【思路导航】在本题中,被除数提取公因数65,除数提取公因数5,再把1/7与1/9的和作为一个数来参与运算,会使计算简便得多。

原式=(65/7+65/9)÷(5/7+5/9)

=【65×(1/7+1/9)】÷【5×(1/7+1/9)】

=65÷5

=13
二、精讲精练
关口15:

计算下面各题:

1.(8/9+1又3/7+6/11)÷(3/11+5/7+4/9)

2.(3又7/11+1又12/13)÷(1又5/11+10/13)

3.(96又63/73+36又24/25)÷(32又21/73+12又8/25)