登录 / 注册
首页>奥数资源>小学奥数>六年级奥数>ppt课件

小学六年级奥数精品《奥数综合复习》ppt课件免费下载7

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
小学六年级奥数精品《奥数综合复习》ppt课件免费下载7小学六年级奥数精品《奥数综合复习》ppt课件免费下载7小学六年级奥数精品《奥数综合复习》ppt课件免费下载7
六年级奥数综合复习
第十五节
和差倍问题
已知条件  
和差问题 几个数的和与差
和倍问题 几个数的和与倍数差
差倍问题 几个数的差与倍数
  公式适用范围 已知两个数的和,差,倍数关系
公式
①(和-差)÷2=较小数 较小数+差=较大数
  和-较小数=较大数
②(和+差)÷2=较大数 较大数-差=较小数
和-较大数=较小数
和倍
和÷(倍数+1)=小数
小数×倍数=大数 和-小数=大数
③差÷(倍数-1)=小数
小数×倍数=大数 小数+差=大数
2.年龄问题的三个基本特征:
  ①两个人的年龄差是不变的;
  ②两个人的年龄是同时增加或者同时减少的;
  ③两个人的年龄的倍数是发生变化的;
植树问题
基本类型
在直线或者不封闭的曲线上植树,两端都植树
棵距×段数=总长 棵数=段数+1
在直线或者不封闭的曲线上植树,两端都不植树
 棵距×段数=总长 棵数=段数-1
在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树
棵距×段数=总长 棵数=段数
关键问题 确定所属类型,从而确定棵数与段数的关系。
鸡兔同笼问题
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
  基本思路:
  ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
  ②假设后,发生了和题目条件不同的差,找出这个差是多少;
  ③每个事物造成的差是固定的,从而找出出现这个差的原因;
  ④再根据这两个差作适当的调整,消去出现的差。
基本公式:
  ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
  ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
盈亏问题
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.
  基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
  基本特点:对象总量和总的组数是不变的。
  关键问题:确定对象总量和总的组数。
牛吃草问题
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;
  关键问题:确定两个不变的量。
基本公式:
  生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
  总草量=较长时间×长时间牛头数-较长时间×生长量;
周期循环与数表规律
周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
  周期:我们把连续两次出现所经过的时间叫周期。
  关键问题:确定循环周期。
  闰 年:一年有366天;
  ①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;
  平 年:一年有365天。
  ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
平均数
基本公式:①平均数=总数量÷总份数
  总数量=平均数×总份数
  总份数=总数量÷平均数
  ②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
  ①求出总数量以及总份数,利用基本公式①进行计算.
  ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。
抽屉原理
  抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
  例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
  ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
  观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
  ①k=[n/m ]+1个物体:当n不能被m整除时。
  ②k=n/m个物体:当n能被m整除时。
  理解知识点:[X]表示不超过X的最大整数。
  例[4.351]=4;[0.321]=0;[2.9999]=2;
  关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
定义新运算
基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
  基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
  关键问题:正确理解定义的运算符号的意义。
  注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
  ②每个新定义的运算符号只能在本题中使用。
数列求和
  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
  基本概念:首项:等差数列的第一个数,一般用a1表示;
  项数:等差数列的所有数的个数,一般用n表示;
  公差:数列中任意相邻两个数的差,一般用d表示;
  通项:表示数列中每一个数的公式,一般用an表示;
  数列的和:这一数列全部数字的和,一般用Sn表示.
基本公式:通项公式:an = a1+(n-1)d;
  通项=首项+(项数一1) ×公差;
  数列和公式:sn,= (a1+ an)×n÷2;
  数列和=(首项+末项)×项数÷2;
  项数公式:n= (an+ a1)÷d+1;
  项数=(末项-首项)÷公差+1;
  公差公式:d =(an-a1))÷(n-1);
  公差=(末项-首项)÷(项数-1);
  关键问题:确定已知量和未知量,确定使用的公式;
分数与百分数的应用
  基本概念与性质:
  分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
  分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
  分数单位:把单位“1”平均分成几份,表示这样一份的数。
  百分数:表示一个数是另一个数百分之几的数。
  常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
  ②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
  ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。
  ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。
  ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
  ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
  ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
比和比例
比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。
  比值:比的前项除以后项的商,叫做比值。
  比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
  比例:表示两个比相等的式子叫做比例。a:b=c:d或
比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
  正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。
  反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。
  比例尺:图上距离与实际距离的比叫做比例尺。
  按比例分配:把几个数按一定比例分成几份,叫按比例分配。
综合行程
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.
  基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
  关键问题:确定运动过程中的位置和方向。
  相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
  追及问题:追及时间=路程差÷速度差(写出其他公式)
行船问题
顺水速度=船速+水速
  逆水速度=船速-水速
顺水行程=(船速+水速)×顺水时间
  逆水行程=(船速-水速)×逆水时间
  静水速度=(顺水速度+逆水速度)÷2
  水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
  过桥问题:关键是确定物体所运动的路程,参照以上公式。
  主要方法:画线段图法
  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
工程问题
基本公式:
  ①工作总量=工作效率×工作时间
  ②工作效率=工作总量÷工作时间
  ③工作时间=工作总量÷工作效率
基本思路:
  ①假设工作总量为“1”(和总工作量无关);
  ②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.
  关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
  经验简评:合久必分,分久必合。
几何面积
基本思路:
  在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。
  常用方法:
  1. 连辅助线方法
  2. 利用等底等高的两个三角形面积相等。
3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
  4. 利用特殊规律
  ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)
  ②梯形对角线连线后,两腰部分面积相等。
  ③圆的面积占外接正方形面积的78.5%。
立体图形
名称 图形 特征 表面积 体积
  长方体
   8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh=Sh
  正方体
   8个顶点;6个面;所有面相等;12条棱;所有棱相等; S=6a2 V=a3
  圆柱
  体 上下两底是平行且相等的圆;侧面展开后是长方形; S=S侧+2S底
  S侧=Ch V=Sh
  圆锥
  体 下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离; S=S侧+S底
  S侧=rl V=Sh
时钟问题-快慢表问题
基本思路:
  1、 按照行程问题中的思维方法解题;
  2、 不同的表当成速度不同的运动物体;
  3、 路程的单位是分格(表一周为60分格);
  4、 时间是标准表所经过的时间;
  合理利用行程问题中的比例关系。