登录 / 注册
首页>奥数资源>小学奥数>六年级奥数>ppt课件

小学六年级奥数原创《容斥原理》ppt课件免费下载21

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
小学六年级奥数原创《容斥原理》ppt课件免费下载21
容斥原理
一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
容斥原理
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理
一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。
某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?
试一试:
一个班有45名学生,订阅《小学生数学报》的有15人,订阅《今日少年报》的有10人,两种报纸都订阅的有6人。
(1)订阅报纸的总人数是多少?(2)两种报纸都没订阅的有多少人?
容斥原理
在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?
试一试:
某校选出50名学生参加区作文比赛和数学竞赛,作文比赛获奖的有16人,数学比赛获奖的有12人,有5人两项比赛都获奖了。
(1)共有多少人获奖?
(2)两项比赛都没获奖的有多少人?
试一试:
1、四(1)班有40个学生,其中25人参加数学小组,23人参加航模小组,有19个人两个小组都参加了,那么,有多少人两个小组都没有参加?
2、有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语,问既懂英语又懂俄语的有多少人?
3、求不超过100的自然数中,不能被3、5中任何一数整除的数的个数。
某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?
如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
5、在一次数学测验中,所有同学都答了第1、2两题,其中答对第1题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都答错。一共有多少人参加了这次数学测验?
6、一个俱乐部里,会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人,都会下的有30人。这个俱乐部里有多少人?
7、全班有50人,不会骑车的有23人,不会滑旱冰的有35人,两样都会的有5人。问:两样都不会的有多少人?
8、六年级(2)班有48名学生,其中会骑自行车的有27个,会游泳的有18人,既会骑自行车又会游泳的有10人。问两样都不会的有多少人?