北师大九上数学1.1 菱形的性质与判定(2)ppt课件
以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
菱形的判定
根据菱形的定义,可得菱形的第一个判定的方法
∵在平行四边形ABCD中
AB=AD
∴四边形ABCD是菱形
数学语言:
有一组邻边相等的平行四边形叫做菱形
探究一
用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
猜想:
对角线互相垂直的平行四边形是菱形.
命题:对角线互相垂直的平行四边形是菱形.
证明:
∵四边形ABCD是平行四边形
∴OA=OC
又∵AC⊥BD;
∴BA=BC
判定方法2:
对角线互相垂直的平行四边形是菱形
∵在□ABCD中,AC⊥BD
∴ □ABCD是菱形
数学语言
先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?说出你的理由
猜想:有四条边相等的四边形是菱形。
O
探究二
命题:有四条边相等的四边形是菱形。
已知:在四边形ABCD中,AB=BC=CD=DA.
求证:四边形ABCD是菱形
证明:
∵AB=CD,AD=BC
∴四边形ABCD是平行四边形
又∵AB=AD,
∴四边形ABCD是菱形
四条边都相等的四边形是菱形.
∵在四边形ABCD中AB=BC=CD=DA
∴四边形ABCD是菱形
判定方法3:
数学语言
有同学是这样做的:将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.你知道其中的道理吗?
如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?
菱形常用的判定方法:
有一组邻边相等的平行四边形叫做菱形
对角线互相垂直的平行四边形是菱形
有四条边相等的四边形是菱形。
归纳:
菱形的判定:
∵AB=BC=CD=DA
∴四边形ABCD是菱形
∵在□ABCD中
AC⊥BD
∴四边形ABCD是菱形
∵在□ABCD中
AB=AD
∴四边形ABCD是菱形
A
B
C
D
O
一组邻边相等的平行四边形是菱形
1、老师说下列三个图形都是菱形,你相信吗?
有一组邻边相等的平行四边形叫做菱形
对角线互相垂直的平行四边形是菱形
有四条边相等的四边形是菱形。
尝试练习:
2、判断下列说法是否正确?为什么?
(1)对角线互相垂直的四边形是菱形; ( )
(2)对角线互相垂直平分的四边形是菱形;( )
(3)对角线互相垂直,且有一组邻边相等
的四边形是菱形; ( )
(4)两条邻边相等,且一条对角线平分一
组对角的四边形是菱形. ( )
╳
√
╳
╳
3、□ABCD的对角线AC与BD相交于点O,
(1)若AB=AD,则□ABCD是 形;(2)若∠BAO=∠DAO,则□ABCD是 形。
菱
菱
(1).下列命题中正确的是( )
A.一组邻边相等的四边形是菱形
B.三条边相等的四边形是菱形
C.四条边相等的四边形是菱形
D.四个角相等的四边形是菱形
C
(2).对角线互相垂直且平分的四边形是( )
A.矩形 B.一般的平行四边形
C.菱形 D.以上都不对
C
(3).下列条件中,不能判定四边形ABCD为菱形的是( )
A.AC⊥BD,AC与BD互相平分 B.AB=BC=CD=DA
C.AB=BC,AD=CD,且AC⊥BD D.AB=CD,AD=BC,AC⊥BD
C
4、选择:
24㎝²
菱形
=
=
证明:在△AOB中,
∴AB2=OA2+OB2
∴△AOB是直角三角形,∠AOB是直角.
∴AC⊥BD
∴□ABCD是菱形
(对角线垂直的平行四边形是菱形)
∵ AB= √5,OA=2,OB=1
8、已知:如图,AD平分∠BAC,DE∥AC 交AB于E,DF∥AB交AC于F.
求证:四边形AEDF是菱形.
∴ □AEDF是菱形
证明:∵DE∥AC DF∥AB
∴四边形AEDF是平行四边形
∵ DE∥AC
∴∠2=∠3
∵ AD是△ABC的角平分线
∴ ∠1=∠2
∴AE=DE
∴ ∠1=∠3
9、如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形。
证明:连接AC、BD
∵四边形ABCD是矩形
∴AC=BD
∵点E、F、G、H为各边中点
∴EF=FG=GH=HE
∴四边形EFGH是菱形
∴平行四边形ABCD是菱形.
∴OA=OC=4 OB=OD=3
证明:
又∵AB=5
在三角形AOB中
∴AC⊥BD
∴∠AOB=90°
∵ 四边形ABCD是平行四边形
∴AB2=AO2+BO2
10、已知:如图,□ ABCD的对角线AC的垂直平分线与边AD,BC分别交于E,F.
求证:四边形AFCE是菱形
∵EF垂直平分AC
∴AO=CO, ∠AOE=90°
∴∠FOC=∠AOE=90°
∵四边形ABCD是平行四边形
∴ AD∥BC ∴AE∥FC
∴∠AEO=∠CFO
∴△AEO≌△CFO
证明:
∴OE=OF
又∵AO=CO
∴四边形AFCE是平行四边形
又∵EF⊥AC
∴四边形AFCE是菱形
∟
∟
E
F
把两张等宽的纸条交叉重叠在一起,你能判断重叠部分ABCD的形状吗?
思考:
请你动脑筋
如图,AD∥BC,BD垂直平分AC,四边形ABCD一定是菱形吗?若是,请说明理由。
思考题:
┐
) 1
2 (
提示: △AOD≌△COB(角边角)
AD=BC
四条边都相等
菱形
一组邻边相等
对角线互相垂直
对角线互相平分
一组对边平行且相等
二组对边平行或相等
判定回顾
四边形
平行四边形
两组对角相等
谢谢!
1、如图,已知在□ABCD中,AD=2AB,E、F在直线AB上,且AE=AB=BF,说明CE⊥DF.
2.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE ∥BD.
求证:四边形OCED是菱形
3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.
求证:四边形ADCE是菱形
B
C
N
4、如图,Rt△ABC中,∠ACB=900,∠BAC=600,DE垂直平分BC,垂足为D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形。
5、如图:将菱形ABCD沿AC方向平移至A1B1C1D1,
A1D1交CD于E,A1B1交BC于F,请问四边形
A1FCE是不是菱形?为什么?
6、如下图在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于C,EF⊥BC于F,四边形AEFG是菱形吗?
7、已知如图,AD是的角平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形。 对于这道,小林是这样证明的。 证明:∵AD平分∠EAF,
∴∠1=∠2,
∵DE∥AC,∴∠2=∠3
∵DF∥AB,∴∠1=∠4
又有AD=AD,∴△AED≌△AFD.
∴AE=AF,DE=DF. ∴四边形AEDF是菱形. 老师说小林的解题过程有错误,你能看出来吗? ⑴请你帮小林指出他的错误是什么?(先在解答过程中划出来,再说明他错误的原因) ⑵请你帮小林做出正确的解答。