全册教案
第十六章 分式
16.1分式
16.1.1从分数到分式
一、授课学时 课时
二、教学目标
1.了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
三、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件.
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
四、课堂引入
1.让学生填写P4[思考],学生自己依次填出:,,,.
2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?
五、例题讲解
P5例1. 当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.
[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
[答案] (1)m=0 (2)m=2 (3)m=1
六、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 当x取何值时,下列分式有意义?
(1) (2) (3)
3. 当x为何值时,分式的值为0?
(1) (2) (3)
七、课后练习 xkb 1.com新 课 标第 一网
1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与y的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
八、答案:
六、1.整式:9x+4, , 分式: , ,
2.(1)x≠-2 (2)x≠ (3)x≠±2
3.(1)x=-7 (2)x=0 (3)x=-1
七、1.18x, ,a+b, ,; 整式:8x, a+b, ;
分式:,
2. X = 3. x=-1
16.1.2分式的基本性质
一、教学目标
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点
1.重点: 理解分式的基本性质.
2.难点: 灵活应用分式的基本性质将分式变形.
三、例、习题的意图分析
1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.
3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入
1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?
2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质.
五、例题讲解xk b 1.co m
P7例2.填空:x kb1 .co m
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.
P11例3.约分:
[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.
P11例4.通分:
[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.
, , , , 。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.
解:= , =,=, = , =。
六、随堂练习
1.填空:
(1) = (2) =
(3) = (4) =
2.约分:
(1) (2) (3) (4)
3.通分:
(1)和 (2)和
(3)和 (4)和
4.不改变分式的值,使下列分式的分子和分母都不含“-”号.
(1) (2) (3) (4)
七、课后练习
1.判断下列约分是否正确:
(1)= (2)=
(3)=0
2.通分:
(1)和 (2)和
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.
(1) (2)
八、答案:xk b1.c om新课 标 第 一网
六、1.(1)2x (2) 4b (3) bn+n (4)x+y
2.(1) (2) (3) (4)-2(x-y)2
3.通分:
(1)= , =
(2)= , =
(3)= =
(4)= =
4.(1) (2) (3) (4)
16.2分式的运算
16.2.1分式的乘除(一)
一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.
二、重点、难点
1.重点:会用分式乘除的法则进行运算.
2.难点:灵活运用分式乘除的法则进行运算 .
三、例、习题的意图分析
1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.
2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.
3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.
4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1
四、课堂引入
1.出示P13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍.
[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.
P14[观察] 从上面的算式可以看到分式的乘除法法则.
3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?
类似分数的乘除法法则得到分式的乘除法法则的结论.
五、例题讲解
P14例1.
[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.
P15例2.
[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.
P15例.
[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1
六、随堂练习
计算
(1) (2) (3)
(4)-8xy (5) (6)
七、课后练习
计算
(1) (2) (3)
(4) (5) (6)
八、答案:
六、(1)ab (2) (3) (4)-20x2 (5)
(6)
七、(1) (2) (3) (4)
(5) (6)
16.2.1分式的乘除(二)
一、教学目标:熟练地进行分式乘除法的混合运算.
二、重点、难点
1.重点:熟练地进行分式乘除法的混合运算.
2.难点:熟练地进行分式乘除法的混合运算.
三、例、习题的意图分析
1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.
教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.
2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.
四、课堂引入
计算
(1) (2)
五、例题讲解
(P17)例4.计算
[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.
(补充)例.计算
(1)
= (先把除法统一成乘法运算)
= (判断运算的符号)
= (约分到最简分式)
(2)
= (先把除法统一成乘法运算)
= (分子、分母中的多项式分解因式)
=
=
六、随堂练习
计算
(1) (2)
(3) (4)
七、课后练习x k b1.co m
计算
(1) (2)
(3) (4)
八、答案:
六.(1) (2) (3) (4)-y
七. (1) (2) (3) (4)
16.2.1分式的乘除(三)
一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.
二、重点、难点
1.重点:熟练地进行分式乘方的运算.
2.难点:熟练地进行分式乘、除、乘方的混合运算.
三、例、习题的意图分析
1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判
断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..
2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.
分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.
四、课堂引入
计算下列各题:
(1)==( ) (2) ==( )
(3)==( )
[提问]由以上计算的结果你能推出(n为正整数)的结果吗?
五、例题讲解x k b1. c om
(P17)例5.计算
[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.
六、随堂练习
1.判断下列各式是否成立,并改正.
(1)= (2)=
(3)= (4)=
2.计算
(1) (2) (3)
(4) 5)
(6)
七、课后练习
计算
(1) (2)
(3) (4)
八、答案:
六、1. (1)不成立,= (2)不成立,=
(3)不成立,= (4)不成立,=
2. (1) (2) (3) (4)
(5) (6)
七、(1) (2) (3) (4)
16.2.2分式的加减(一)
一、教学目标:(1)熟练地进行同分母的分式加减法的运算.
(2)会把异分母的分式通分,转化成同分母的分式相加减.
二、重点、难点
1.重点:熟练地进行异分母的分式加减法的运算.
2.难点:熟练地进行异分母的分式加减法的运算.
三、例、习题的意图分析
1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.
3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;
第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.
(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为.若知道这个公式,就比较容易地用含有R1的式子表示R2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.
Xk b1.com 新 课标 第 一网
四、课堂堂引入
1.出示P18问题3、问题4,教师引导学生列出答案.
引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?
3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?
4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?
五、例题讲解
(P20)例6.计算
[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.
(补充)例.计算
(1)
[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.
解:
=
=
=
=
(2)
[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.
解:
=
=
=
=
=
六、随堂练习
计算
(1) (2)
(3) (4)
七、课后练习
计算
(1) (2)
(3) (4)
八、答案:x kb1.c o m
四.(1) (2) (3) (4)1
五.(1) (2) (3)1 (4)
16.2.2分式的加减(二)
一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.
二、重点、难点
1.重点:熟练地进行分式的混合运算.
2.难点:熟练地进行分式的混合运算.
三、例、习题的意图分析
1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.
例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.
2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.
四、课堂引入
1.说出分数混合运算的顺序.
2.教师指出分数的混合运算与分式的混合运算的顺序相同.
五、例题讲解
(P21)例8.计算
[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.
(补充)计算
(1)
[分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..
解:
=
=
=
=
(2)
[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.
解:
=
=
=
=
六、随堂练习 x kb 1.com新 课标第一网
计算
(1) (2)
(3)
七、课后练习
1.计算
(1)
(2)
(3)
2.计算,并求出当-1的值.
八、答案:
六、(1)2x (2) (3)3
七、1.(1) (2) (3) 2.,-
16.2.3整数指数幂
一、教学目标:
1.知道负整数指数幂=(a≠0,n是正整数).
2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
二、重点、难点
1.重点:掌握整数指数幂的运算性质.
2.难点:会用科学计数法表示小于1的数.
三、例、习题的意图分析
1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.
2. P24观察是为了引出同底数的幂的乘法:,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.
3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.
4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.
5.P25最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.
6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.
7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.
四、课堂引入
1.回忆正整数指数幂的运算性质:
(1)同底数的幂的乘法:(m,n是正整数);
(2)幂的乘方:(m,n是正整数);
(3)积的乘方:(n是正整数);
(4)同底数的幂的除法:( a≠0,m,n是正整数,
m>n);
(5)商的乘方:(n是正整数);
2.回忆0指数幂的规定,即当a≠0时,.
3.你还记得1纳米=10-9米,即1纳米=米吗?
4.计算当a≠0时,===,再假设正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么==.于是得到=(a≠0),就规定负整数指数幂的运算性质:当n是正整数时,=(a≠0).
五、例题讲解
(P24)例9.计算
[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数
指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.
(P25)例10. 判断下列等式是否正确?
[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.
(P26)例11.
[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.
六、随堂练习
1.填空
(1)-22= (2)(-2)2= (3)(-2) 0=
(4)20= ( 5)2 -3= ( 6)(-2) -3=
2.计算
(1) (x3y-2)2 (2)x2y-2 ·(x-2y)3 (3)(3x2y-2) 2 ÷(x-2y)3
七、课后练习
1. 用科学计数法表示下列各数:
0.000 04, -0. 034, 0.000 000 45, 0. 003 009
2.计算
(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3
八、答案:
六、1.(1)-4 (2)4 (3)1 (4)1(5) (6)
2.(1) (2) (3)
七、1.(1) 4×10-5 (2) 3.4×10-2
------【以上为无格式内容概要,如需完整内容请下载】------