登录 / 注册
首页>人教版小学数学五年级下册>四:分数的意义和性质
  • 资料信息
  • 科目: 

    人教版小学数学五年级下册 - 四:分数的意义和性质

  • 格式:  DOC
  • 大小:  1.06M    28页
  • 时间:  2017-05

五下数学《第四单元:分数的意义和性质》教案教学设计下载37

以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
4、约分
第一课时最大公因数
教学内容:人教版小学数学五年级下册第60~62页。
教学目标:
知识与技能:结合具体生活情境,通过确定取值范围、动手操作验证、全班交流,经历公因数和最大公因数的产生,并理解其意义。
过程与方法:在解决实际问题的过程中,通过独立尝试、全班交流,探究求最大公因数的方法,并会求100以内两个数的最大公因数,感知公因数和最大公因数在生活中的广泛应用。
情感、态度和价值观:在自主探索与合作交流学习的过程中,渗透集合思想,培养学生的分析、归纳和解决问题的思维能力。
教学重点:
1.通过对实际问题的解决,理解公因数和最大公因数的意义。
2.通过独立尝试、全班交流,探究求最大公因数的方法,并会求100以内两个数的最大公因数。
教学难点:结合具体情境理解公因数及最大公因数的意义,建立公因数和最大公因数与实际生活问题的联系。
教学设计:
一、复习导入
1.教师提问:什么是因数?因数有什么特点?
学生回顾前面的知识,在小组中交流后汇报,老师总结使学生了解因数的几个特点:
(1)最小的因数是1,最大的因数是它本身;
(2)因数的个数是有限的;
(3)一个数除以它的因数,商一定是自然数(0除外)。
2.写出16和12所有因数。学生独立练习,然后交流检查。
教师提问:你是怎样找一个数的因数的?(组织学生交流,再说一说)
二、新课讲授
1.教学公因数和最大公因数。
(1)出示教材第60页例1。
(2)找出8的因数。(1、2、4、8)
(3)找出12的因数。(1、2、3、4、6、12)
(4)再找12、8的因数中两个数的公有因数。(1、2、4)
电脑课件呈现:

指出:1、2、4是8和12公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
教师适时引出课题,并板书:最大公因数。
2.组织小练习。
(1)完成教材第61页的“做一做”第1题。
(2)完成教材第61页的“做一做”第2题,说一说哪几个数写在左边,哪几个数写在右边,哪几个数写在中间。

(3)完成教材第63页练习十五的第1题。请学生填在教材上,说一说是怎样找的。
3.教学求两个数的最大公因数的方法。
(1)出示教材第60页例2:怎样求18和27的最大公因数?
(2)学生先独立思考用自己想到的方法试着找出18和27的最大公因数。
(3)小组讨论,互相启发,再在全班交流,学生可能会说出:
方法一:

先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18的因数,再看18的因数中有哪些是27的因数,再看哪个最大。

方法三:先写出27的因数,再看27的因数中哪些是18的因数。从中找出最大的。

(4)引导学生看教材第61页的“你知道吗”,指导学生自学分解质因数的方法,找两个数的最大公因数。

24和36的最大公因数=2×2×3=12
指出:两个数所有公因数的积,就是这两个数的最大公因数。
(5)巩固小练习:完成教材第61页的“做一做”第2、3题。
第2题:学生根据所学知识站队,并说出这样站队的道理。
第3题:学生先独立观察每组数有什么特点,再进行交流。
小结:求两个数的最大公因数有哪些特殊情况?
两个数成倍数关系时,较小的数就是它们的最大公因数。
当两个数只有公因数1时,它们的最大公因数也是1。
三、巩固练习
1.完成教材第63页练习十五的第2题。
学生先独立完成,然后集体交流找最大公因数的方法,并将这8组数分为三类:一类是最大的公因数是1,(如5和9,15和16);一类是最大公因数是较小的数本身(如34和17、16和48、13和78);另一类是一般情况。
此题渗透了互质数组成的几种情况,练习时,教师可先让学生回忆质数和合数的概念,然后让学生独立完成,然后全班反馈。
四、课堂小结:通过这节课的学习活动,你有什么收获?学生畅谈学习所得。
五、课后作业.完成教材第63页练习十五的第3、4题。
板书设计
最大公因数
两个数公有的因数叫做它们的公因数;其中最大的公因数,叫做它们的最大公因数。
8和12的公因数:1、2、4
8和12的最大公因数:4

第二课时最大公因数(2)
教学内容:利用最大公因数知识解决生活中的实际问题(教材第62页的例3,及教材第63~64页练习十五第5~11题)。
教学目标
知识与技能:进一步理解公倍数、最小公倍数的概念。
过程与方法:通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
情感态度与价值观:在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。
教学重点难点:能正确判断生活中的实际问题是要利用最大公因数知识来解决,并能说出这样想的道理。
教学过程
一、复习导入
1.什么是公因数?什么是最大公因数?
2.找出每组数的最大公因数。
5和15 21和28 30和18 8和9
11和33 60和48 12和42 4和15
在现实生活中,有的问题需要用最大公因数的知道来解决,这就是我们今天要学习的内容。
板书课题: 最大公因数(2)。
二、新课讲授
出示教材第62页例3。
(1)引导学生审题,理解题意。在贮藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。
(2)学生以小组为单位,探究如何拼摆。
每组4人,在课前印好画有长方形的方格纸,每人选择一种边长的方砖,试一试,只要画满一条长边,一条宽边就可以。
教师巡视指导,辅导学生。
(3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。
(4)教师:应该怎样选择方砖来铺地呢?
通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。
(5)12和16的公因数有1、2、4,其中最大公因数是4。所以可选边长是1dm、2dm、4dm的地砖,边长最大的是4dm。
三、巩固练习
完成教材第63~64页练习十五第5、8、9题。
1.完成教材第63页练习十五的第5题。
此题是有关两数最大公因数的实际问题。教师要引导学生理解题意,要剪成“同样大小的正方形而没有剩余”。正方形的边长必须既是70的因数又是50的因数,要使正方形的边长最大,所以要找70和50的最大公因数。学生弄清题意后,由学生独立完成,然后全班反馈。
4.完成教材第64页练习十五第8题。
此题检验学生公因数是1的数的几种情况,答案不唯一。
5.完成教材第64页练习十五第9题此题检查学生当两数是倍数关系、互质关系、一般关系情况下求最大公因数的能力。
四、课堂小结: 通过这节课的学习,你有什么收获?
五、课后作业:完成教材第63~64页练习十五第6、7、10、11题。
板书设计
最大公因数(2)
几个数公有的因数叫做它们的公因数,公因数中最大的因数叫它们的最大公因数。
(1)两个数没有特殊关系,用列举法找出它们的最大公因数。
(2)两个数是倍数关系,它们的最大公因数是较小数。
(3)两个数公因数只有1,它们的最大公因数是1。
第三课时约 分
教学内容:最简分数的意义和约分的意义(教材第65页的例4及“做一做”,第66页练习十六的第1~4题)。
教学目标:
知识和技能:通过学生自主尝试以及自学交流,使学生理解约分和最简分数的意义。
过程与方法:通过学生独立思考、小组合作交流,使学生掌握约分的方法,并能够正确、熟练地进行约分。
情感、态度和价值观:通过学—导—教的问题解决的过程,培养学生独立思考、小组交流解决问题的能力,让学生感悟到合作学习的魅力。
教学重点:理解约分和最简分数的意义;掌握约分的方法。
教学难点:能准确判断约分的结果是不是最简分数。
教学过程:
一、复习导入
1.提问:你能很快找出下面各组数的最大公因数吗?
9和18 15和21 7和9
4和24 20和28 11和13
2.提问:你是怎样找出两个数的最大公因数的?求两个数的最大公因数有几种情况?教师引导学生回顾
小结:求两个数的最大公因数时,有两种特殊情况:一种是两个数成倍数关系,较小的数就是两个数的最大公因数;另一种是两个数的公因数只有1,它们的最大公因数就是1。
二、新课讲授
1.出示教材第65页例4:把化成最简分数。
(1)学生先尝试把2430化成最简分数,引导学生想出多种方法进行约分。
方法一:用分子、分母的公因数,逐次去除分子和分母,然后得到最简分数。 
方法二:用分子、分母的最大公因数,分别去除分子和分母,得到最简分数。

(2)教师:怎样进行约分?
引导学生概括出方法:用分子和分母的公因数(1除外)去除。
(3)指出:像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。(板书)
约分时,还可以怎样写呢?请同学们看教材第65页的例4,试着自己写一写。学生汇报约分的写法,老师板书。
 或 
提问:怎样约分比较简便?
小结:如果一下子能看出分子和分母的最大公因数,直接用它们的最大公因数去除比较简便。
2.完成教材第65页“做一做”。学生独立完成集体订正,第2题先判断哪些是最简分数,再把不是最简分数的化成最简分数。
三、巩固练习
完成教材第66页练习十六的第1—4题
四、课堂小结
这节课我们学习了什么叫最简分数和怎样约分。在约分时,直接用分子和分母的最大公因数去除分数的分子和分母,得到最简分数,这种方法最简便。
板书设计
约分(1)

分子和分母只有公因数1,像这样的分数叫做最简分数。把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
或
第四课时 约分(2)
教学内容: 约分练习课(教材第66~67页练习十五第5~14题)。
教学目标
知识与技能:通过教学,巩固学生对最简分数和约分的概念的理解,能熟练应用约分的方法,
过程与方法:使学生进一步理解约分的数学根据是分数的基本性质,形成约分的技能,感受约分的应用价值。
情感态度与价值观:使学生在自主探索、合作交流中,体验成功的愉悦,进一步树立学好数学的自信心,发展对数学的积极情感,培养学生主动学习和独立思考的习惯。
教学重点: 正确、熟练地进行约分。 
教学难点 :巩固学生对最简分数和约分的概念的理解,能熟练应用约分的方法,正确地约分。
教学过程:
一、复习导入
1.提问:什么叫最简分数?什么叫约分?怎样约分?
2.指出下面哪些分数是最简分数。。
3.记住约分的规则:约分时,通常要约成最简分数。
二、课堂作业
1.完成教材第66~67页练习十六第5~14题。
(1)第7题:此题是判断哪几个分数是相等的,然后在直线上把这个点画出来。练习时,教师先引导学生观察,将这几个分数进行约分,然后在直线上画出表示该数的点,本题给出的5个分数,三个相等,另两个相等,所以直线上只要画2个点就可以了。
(2)第9题:此题也是“求一个数是另一个数的几分之几”的实际问题。练习时教师引导学生根据插图中的两个时钟,求出小明每天的睡眠时间,然后再和全天24小时进行比较。
(3)第14题:这题要求学生逆向思考,教师先让学生理解题意,“用2约了两次,用3约了一次。”说明原来的分数在约分过程中分子和分母同除以2×2×3=12,才得到,要求原来的分数,就要把53、64、18、129、107、1015、1516的分子、分母都乘12,即可得到原来的分数。
2.完成教材第66页练习十六第5题。
此题是“求一个数是另一个数的几分之几”的实际问题。练习时先让学生根据分数的意义直接写出答案,也可以根据分数与除法的关系列出除法算式,再写出答案,要求学生做出的结果必须用最简分数表示,反馈时,让学生说说思考的过程。
3.完成教材第66页练习十六第8题。
此题是“求两个数的最大公因数”的实际问题。学生人数必须既是练习本总数的因数,又是铅笔总数的因数才能都没有剩余,所以学生人数只能是练习本总数和铅笔总数的公因数,求最多能分给多少名学生就是求公因数中最大的那个,也就是求最大公因数。
4.完成教材第67页练习十六第10题。
学生独立完成后集体订正。
5.完成教材第67页练习十六第11题。
学生独立完成后集体订正,要求学生注意解题格式。6.完成教材第67页练习十六第12题。此题是“求一个数是另一个数的几分之几”的实际问题。解答时要注意让学生找准数量关系。
三、课堂小结
本节课我们复习了上节课学习的有关约分的知识。通过本节课的学习,我们要能熟练、正确进行约分,并能灵活运用有关约分的知识解题。
板书设计
约分(2)
1.什么叫最简分数?
2. 什么叫约分?
3. 怎样约分?
4.约分时,我们通常要把分数化简成最简分数为止。
5.通分
第一课时最小公倍数
教学内容:公倍数,最小公倍数的概念及求两个数的最小公倍数的方法(教材第68~69页的例1、例2,及教材第71页练习十七第1~4题)。
教学目标
知识与技能:使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
过程与方法:使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
情感态度与价值观:使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数。
教学难点:并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
教学过程:
一、复习导入
写出下面各数的倍数。(各写5个)
3的倍数有:( )
2的倍数有:( )
2.学生汇报填写结果,教师板书记录。
3.说一说,你对倍数有什么了解。学生回答内容要求包含:
(1)一个数最小的倍数是它本身。
(2)一个数的倍数有无数个,没有最大的倍数。
二、新课讲授
1.最小公倍数。
课件呈现:
(1)提出问题、投影呈现教材68页例1.
(2)学生交流合作,得出结论,同时课件呈现下图
4的倍数

6的倍数

(3)12,24,36,……是4和6公有的倍数,叫它们的公倍数。
我们还可以这样表示:

并指出:其中,12是最小的公倍数,叫做他们的最小公倍数。
(4)想一想,两个数有没有最大的公倍数?
(5)巩固练习。完成教材第68页“做一做”。
指名学生回答,集体订正。
2.求两个数的最小公倍数。
(1)出示教材第69页例题2。
(2)学生尝试练习。由学生自主探索有效解决问题的方法。
(3)汇报探索结果
学生可能出现以下几种方法:
方法一:先分别写出6和8各自的倍数,再从中找出公倍数和最小公倍数。

方法二:先分别写出8的公倍数,再从小到大圈出6的公倍数,第一个圈出的就是它们的最小公倍数。
方法三:先写出6的倍数,再看6的倍数中哪些是8的倍数,从中找出最小的。
(4)观察一下:两个数的公倍数和它们的最小公倍数之间有什么关系?组织学生观察,然后在小组中讨论交流,使学生明确:两个数的公倍数就是它们最小的公倍数的倍数。
(5)即时巩固。
完成教材第69页的“做一做”。
学生独立完成,找出各组数的最小公倍数。
②点学生回答,说一说你是怎样找的。
③你有什么发现呢?组织学生观察讨论并交流。
教师小结:a.如果两个数成倍数关系,那么其中的较小数就是它们的最大公因数,较大数就是它们的最小公倍数。
b.如果两个数只有公因数1,那么它们的最大公因数是1,最小公倍数是两个数的积。
三、课堂作业
完成课本第71页练习十七的第1~4题。
1.学生独立完成1~3题,巩固求最小公倍数的方法。
2.学生独立完成第4题,说说判断的理由是什么?
四、课堂小结
同学们,今天我们知道了什么是公倍数、最小公倍数以及最小公倍数的求法,通过今天的学习,你有新的收获吗?
板书设计
最小公倍数(1)
两个数公有的倍数,叫做它们的公倍数,其中最小的公倍数,叫做它们的最小公倍数

第二课时最小公倍数(2)
教学内容:利用最小公倍数知识解决生活中的实际问题(教材第70页的例3,及教材第71~72页练习十七第5~12题。)。
教学目标
知识和技能:学生在用长方形拼正方形的活动中,体验并理解公倍数与最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。
过程与方法:通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实中的应用。
情感、态度和价值观:在探索交流的过程中,使学生获得成功的体验,感受数学与实际生活的密切联系,提高学习数学的兴趣。
教学重点:理解公倍数与最小公倍数的含义。
教学难点:从动手操作的活动中抽象出公倍数的概念。
教学过程
一、复习导入
求下列各数的最小公倍数。
6和8 15和12 4和6
8和24 9和54 12和36
8和9 5和12 13和5
问:你能总结一下找两个数最小公倍数的方法吗?
二、新课讲授
出示教材第70页例3。
(1)创设情境,提出问题。投影呈现情景图。(见教材第70页)
教师:如果用这种墙砖铺一个正方形墙面(用的墙砖必须是整块的),正方形墙面的边长可以是多少分米?最小是多少分米?
(2)学生讨论,探索结果。
教师引导学生讨论以下两点内容:
①“用的墙砖必须是整块”是什么意思?
②墙面的边长与墙砖的长、宽有什么关系?
③正方形的边长可以有多少种?最小的是多少?
(3)教师引导,解决问题,学生动手操作。
①假设墙面的边长是10dm,可以怎样铺,铺的结果怎样?(有剩余面积,不符合题目要求)
原因:10不是3的倍数。
②假设墙面的边长是9dm,可以怎样铺,铺的结果怎样?(有剩余面积,不符合题目要求)
原因:9不是2的倍数。
③假设墙面的边长是6dm,可以怎样铺,铺的结果如何?(没有剩余面积,符合题目要求)原因:6既是3的倍数,又是2的倍数。
(4)教师引导提问:墙面的边长除了6dm,还可以是多少?最小是多少?
学生通过交流,讨论得出结果:墙面的边长还可以有12dm、18dm、24dm等等,最小的是6dm。原因:这些数既是3的倍数,又是2的倍数。结果:正方形墙面的边长必须既是3的倍数,又是2的倍数。
(5)2和3的公倍数:6、12、18、…其中最小的是6.所以可以铺的正方形的边长会有很多个:6dm、12dm、18dm、…,边长最小的是6dm.
三、课堂作业
完成教材第71~72页练习十七第5、6、8、12题。
1.指导学生完成第5题。
2.指导学生完成第6题。
教师要引导学生理解题意,至少要多少天以后给这两种花同时浇水,说明浇水的天数既是4的倍数,又是6的倍数。至少是最少的意思,所以要找4和6的最小公倍数。
3.学生独立完成第8题。
4.指导学生完成第12题。
这题是个思考题,练习时先让学生分小组来讨论完成。解题思路是:先从小到大写出36的所有因数,然后从中依次观察,哪两个数的最小公倍数是36。
四、课堂小结: 通过这节课的学习,你有什么收获?
五、课后作业:完成教材第71~72页练习十七第7、9、10、11题。
板书设计
最小公倍数(2)
几个数公有的倍数叫做它们的公倍数,几个数的公倍数中最小的数是它们的最小公倍数。
(1)两个数没有特殊关系,用列举法找出它们的最小公倍数。
(2)两个数是倍数关系,它们的最小公倍数是较大数。
(3)两个数公因数只有1,它们的最小公倍数是它们的积。

第三课时通分(1)
教学内容:人教版小学数学五年级下册第73——74页
教学目标
知识和技能:理解通分的意义及初步掌握通分的方法,会比较分数的大小。
过程与方法:培养学生的观察能力、分析能力和归纳概括能力。
情感、态度和价值观:培养学生自主探究的精神,让学生体会数学与生活的紧密联系,树立学好数学的信心。
教学重点:理解通分的意义,会通分。
教学难点:比较分数的大小。
教学过程:
一、复习导入
提问:1.的分数单位是( ),它有( )个这样的分数单位。
2.与,哪个大,为什么?
教师:怎样比较它们的大小呢?今天,我们来探究一种新的方法,可以比较出它们的大小。
板书课题:通分。
二、新课讲授
1.出示教材第73页例4。(出示世界地图)你知道地球上的陆地多还是海洋多吗?(学生观察图进行判断)
再出示条件:陆地面积约占地球总面积的,海洋面积约占地球总面积的。
(1)放手让学生根据条件自己比较,学生相互交流方法、结果及理由。
(2)小结:要比较陆地面积和海洋面积谁大,就是要比较和的大小。是3个,是7个,所以大于。
(3)比较下面各组分数的大小。

学生独立完成,口答结果。
提问:以上各组分数有什么共同特点?同分母分数如何比较大小?
(学生归纳同分母分数比较大小的方法)
小结:同分母分数分子大的分数比较大。
(4)再出示:

学生尝试比较上面各组分数的大小。
(5)请学生汇报自己比较的结果及理由。
以和为例,学生可以用分数单位的大小推出;因为<,所以3个小于3个。
提问:以上各组分数有什么共同特点?分子相同的分数如何比较大小?
小结:分子相同的分数,分母小的比较大,分母大的比较小。
2.出示教材第74页例5。
(1)提问:和这两个分数有什么共同特点?
像这样分子和分母都不相同的分数,怎样比较大小?
学生思考并回答,可能出现以下两种思路:
一种是化成同分母分数比较,一种是化成同分子分数比较。
教师指出:这两种思路,都能把新问题转化成已学过的问题。都是可以的,今天我们重点研究化成同分母分数的方法,我们把几个分数的相同分母叫做公分母。
(2)教师提问:用什么数做公分母?怎样把异分母分数化成与原来分数相等的同分母分数?
学生独立思考。尝试解答,然后在小组内交流。
(3)请学生汇报解答过程。
先求出和的分母的最小公倍数是20,用20作公分母。
板书: 
(4)教师提问:根据是什么?(分数的基本性质)
教师指出:异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(板书课题:通分)
板书:异分母分数同分母分数
(5)教师提问:你能说一说怎样通分吗?(学生用自己的语言归纳)
小结:通分时,先求出原来分母的最小公倍数作分母,再看原来分数的分母变成公分母要乘上几,分子也要乘上相同的数,提问:为什么用两个分母的最小公倍数作公分母,用其他较大的公倍数作公分母可以吗?
(6)在通分的基础上,比较和的大小,让学生完整写出例4的比较过程。
  
三、.巩固练习。
(1)完成教材第73页的“做一做”。
判断时要求学生说出根据。
(2)完成教材第74页“做一做”。
四、课堂小结
通过这节课的学习活动,你有什么收获?学生交流学习的收获。
五、课后作业:完成教材第75页练习十八的第1~3题。
板书设计
通分(1)
例3:
例4:  
把异分母分数化成和原来分数相等的同分母分数,叫做通分。异分母分数同分母分数
第四课时通分(2)
教学内容: 通分练习课(教材第75~76页练习十八第4~12题)。
教学目标:
知识与技能:进一步理解通分的意义,熟练掌握通分的方法,并能进行两个以上分数的通分。
过程与方法:熟练掌握分数大小比较的方法,能将两个以上分数按一定的大小顺序排列。
情感态度与价值观:.经历数学学习活动,形成解决问题的一些基本策略,发展实践能力与创新精神。
教学重点:三个分数通分的方法、能很快找出三个分数分母的最小公倍数。
教学难点:.熟练掌握求两个分数分母的最小公倍数的方法,以及求具有倍数关系的两个数的最小公倍数的方法。
教学过程
一、复习导入
1.回答下列问题。
(1)你是如何比较分数大小的?
①同分母分数的比较;同分子分数的比较。
②异分母分数的比较;异分子分数的比较。
(2)什么叫做通分?
2.找出下列各组数的最小公倍数。(小黑板出示)
8和6 15和25 16和40
3和4 5和9 12和7
2和6 6和18 15和30
说一说,找最小公倍数的方法,及简便方法。
3.给下列各组分数通分。

学生练习,指名板演,最后全班同学评价。
二、新课讲授
1.呈现情境图。(课文第75页练习十

------【以上为无格式内容概要,如需完整内容请下载】------