高三物理第二轮总复习
917页
目 录
第1专题 力与运动
第2专题 动量和能量
第3专题 圆周运动、航天与星体问题
第4专题 带电粒子在电场和磁场中的运动
第5专题 电磁感应与电路的分析
第6专题 振动与波、光学、执掌、原子物理
第7专题 高考物理实验
第8专题 数学方法在物理中的应用
第9专题 高中物理常见的物理模型
第10专题 计算题的答题规范与解析技巧
第1专题 力与运动
知识网络
考点预测
本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年(特别是2008年以前)都有独立的命题出现在高考中(如2008年的全国理综卷Ⅰ第23题、四川理综卷第23题),但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2010年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.
在综合复习这三个模块内容的时候,应该把握以下几点:
1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.
2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.
3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.
一、运动的描述
要点归纳
(一)匀变速直线运动的几个重要推论和解题方法
1.某段时间内的平均速度等于这段时间的中间时刻的
瞬时速度,即 .
2.在连续相等的时间间隔T内的位移之差Δs为恒量,且Δs= .
3.在初速度为零的匀变速直线运动中,相等的时间T内连续通过的位移之比为:
s1∶s2∶s3∶…∶sn=1∶3∶5∶…∶(2n-1)
通过连续相等的位移所用的时间之比为:
t1∶t2∶t3∶…∶tn=
4.竖直上抛运动
(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.
(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.
(3)整体性:整个运动过程实质上是匀变速直线运动.
5.解决匀变速直线运动问题的常用方法
(1)公式法
灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.
(2)比例法
在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.
(3)逆向过程处理法
逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.
(4)速度图象法
速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.
(二)运动的合成与分解
1.小船渡河
设水流的速度为v1,船的航行速度为v2,河的宽度为d.
(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,
即t= ,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间tmin= .
(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2
时,最短路程smin=d;当v1>v2时,最短路程smin= ,
如图1-1 所示.
图1-1
2.轻绳、轻杆两末端速度的关系
(1)分解法
把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v1cos θ1=v2cosθ2.
(2)功率法
通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.
3.平抛运动
如图1-2所示, 物体从O处
以水平初速度v0抛出,经时间t
到达P点.
图1-2
合位移的方向与水平方向的夹角为α,有:
tanα= ,即α=
要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tanθ=2tanα.
(4)时间:由sy= gt2得,t= ,平抛物体在空中运
动的时间t只由物体抛出时离地的高度sy决定,而与抛出时的初速度v0无关.
(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g=)相等,且必沿竖直方向,如图1-3所示.
图1-3
任意两时刻的速度与速度的变化量Δv构成直角三角形,Δv沿竖直方向.
注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.
(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.
图1-4
故有:y=
热点、重点、难点
(一)直线运动
高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.
●例1 如图1-5甲所示,A、B两辆汽车在笔直的公路上同向行驶.当B车在A车前s=84 m处时,B车的速度vB=4 m/s,且正以a=2 m/s2的加速度做匀加速运动;经过一段时间后,B车的加速度突然变为零.A车一直以vA=20 m/s的速度做匀速运动,从最初相距84 m时开始计时,经过t0=12 s后两车相遇.问B车加速行驶的时间是多少?
图1-5甲
【解析】设B车加速行驶的时间为t,相遇时A车的位移为:sA=vAt0
B车加速阶段的位移为:
sB1=vBt+at2
匀速阶段的速度v=vB+at,匀速阶段的位移为:
sB2=v(t0-t)
相遇时,依题意有:
sA=sB1+sB2+s
联立以上各式得:t2-2t0t- =0
将题中数据vA=20 m/s,vB=4 m/s,a=2 m/s2,t0=12 s,代入上式有:t2-24t+108=0
解得:t1=6 s,t2=18 s(不合题意,舍去)
因此,B车加速行驶的时间为6 s.
[答案] 6 s
【点评】①出现不符合实际的解(t2=18 s)的原因是方程“sB2=v(t0-t)”并不完全描述B车的位移,还需加一定义域t≤12 s.
②解析后可以作出vA-t、vB-t 图象加以验证.
图1-5乙
根据v-t图象与t围成的面积等于位移可得,t=12 s时,
Δs=[ ×(16+4)×6+4×6] m=84 m.
(二)平抛运动
平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).
●例2 图1-6甲所示,m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮.已知皮带轮的半径为r,传送带与皮带轮间不会打滑.当m可被水平抛出时,A轮每秒的转数最少为( )
图1-6甲
A. B. C. D.
【解析】解法一 m到达皮带轮的顶端时, 若m ≥ mg,
表示m受到的重力小于(或等于)m沿皮带轮表面做圆周运动的向心力,m将离开皮带轮的外表面而做平抛运动
又因为转数n=
所以当v≥ ,即转数n≥ 时,m可被水平抛出,
故选项A正确.
解法二 建立如图1-6乙所示的直角坐标系.当m到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m立即离开皮带轮做平抛运动.
图1-6乙
又因为皮带轮圆弧在坐标系中的函数为:当y2+x2=r2
初速度为v的平抛运动在坐标系中的函数为:
y=
平抛运动的轨迹在皮带轮上方的条件为:当x>0时,平抛运动的轨迹上各点与O点间的距离大于r,即 >r
即 >r
解得:v≥
又因皮带轮的转速n与v的关系为:n=
可得:当n≥ 时,m可被水平抛出.
[答案] A
【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式
为a= ,而决定式为a= ,故这两种方法殊途同归.
★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB段是助滑雪道,倾角α=30°,BC段是水平起跳台,CD段是着陆雪道,AB段与BC段圆滑相连,DE段是一小段圆弧(其长度可忽略),在D、E两点分别与CD、EF相切,EF是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A处的起滑台距起跳台BC的竖直高度h=10 m.A点与C点的水平距离L1=20 m,C点与D点的距离为32.625 m.运动员连同滑雪板的总质量m=60 kg.滑雪运动员从A点由静止开始起滑,通过起跳台从C点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的
影响,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:
图1-7
(1)运动员在C点水平飞出时的速度大小.
(2)运动员在着陆雪道CD上的着陆位置与C点的距离.
(3)运动员滑过D点时的速度大小.
【解析】(1)滑雪运动员从A到C的过程中,由动能定理
得:mgh-μmgcosα -μmg(L1-hcot α)= mvC2
解得:vC=10 m/s.
(2)滑雪运动员从C点水平飞出到落到着陆雪道的过程中做平抛运动,有:
x=vCt
y= gt2
=tan θ
着陆位置与C点的距离s=
解得:s=18.75 m,t=1.5 s.
(3)着陆位置到D点的距离s′=13.875 m,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v0=vCcos θ+gtsin θ
加速度为:mgsin θ-μmgcos θ=ma
运动到D点的速度为:vD2=v02+2as′
解得:vD=20 m/s.
[答案] (1)10 m/s (2)18.75 m (3)20 m/s
互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.
二、受力分析
要点归纳
(一)常见的五种性质的力
续表
续表
续表
(二)力的运算、物体的平衡
1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).
2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或Fx=0、Fy=0、Fz=0.
注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.
3.平衡条件的推论
(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.
(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.
物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.
图1-8
4.共点力作用下物体的平衡分析
热点、重点、难点
(一)正交分解法、平行四边形法则的应用
1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:
Fx合=0,Fy合=0,Fz合=0.
2. 平行四边形法有时可巧妙用于定性分
析物体受力的变化或确定相关几个力之比.
●例3 举重运动员在抓举比赛中为了
减小杠铃上升的高度和发力,抓杠铃的两手
间要有较大的距离.某运动员成功抓举杠铃
时, 测得两手臂间的夹角为120°, 运动员
的质量为75 kg,举起的杠铃的质量为125 kg,
如图1-9甲所示.求该运动员每只手臂对杠
铃的作用力的大小.(取g=10 m/s2)
【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9所示.
图1-9
【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示
图1-9丙
由平衡条件得:
2Fcos 60°=mg
解得:F=1250 N.
[答案] 1250 N
●例4 两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为 ,细杆长度是球面半径的
倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]( )
图1-10甲
A.45° B.30° C.22.5° D.15°
【解析】解法一 设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示
图1-10乙
其中球面对两球的弹力方向指向圆心,即有:
cosα=
解得:α=45°
故FNa的方向为向上偏右,即β1= -45°-θ=45°-θ
FNb的方向为向上偏左,即β2= -(45°-θ)=45°+θ
两球都受到重力、细杆的弹力和球面的弹力的作用,过O作竖直线交ab于c点,设球面的半径为R,由几何关系可得:
解得:FNa= FNb
取a、b及细杆组成的整体为研究对象,由平衡条件得:
FNa·sin β1=FNb·sin β2
即 FNb·sin(45°-θ)=FNb·sin(45°+θ)
解得:θ=15°.
解法二 由几何关系及细杆的长度知,平衡时有:
sin∠Oab=
故∠Oab=∠Oba=45°
再设两小球及细杆组成的整体重心位于c点,由悬挂法
的原理知c点位于O点的正下方,且
即R·sin(45°-θ)∶R·sin(45°+θ)=1∶
解得:θ=15°.
[答案] D
【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.
②在理论上,本题也可用隔离法分析小球a、b的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.
③解法二较简便,但确定重心的公式 超
纲.
(二)带电粒子在复合场中的平衡问题
在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.
在如图1-11所示的速度选择器中,选择的速度v= ;
在如图 1-12 所示的电磁流量计中,流速v= ,流量
Q= .
图1-11 图1-12
●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN运动,如图1-13所示.由此可判断下列说法正确的是( )
图1-13
A.如果油滴带正电,则油滴从M点运动到N点
B.如果油滴带正电,则油滴从N点运动到M点
C.如果电场方向水平向右,则油滴从N点运动到M点
D.如果电场方向水平向左,则油滴从N点运动到M点
【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M点向N点运动,故选项A正确、B错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN垂直的洛伦兹力对应粒子从N点运动到M点,即选项C正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M点运动到N点的,故选项D错误.
[答案] AC
【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.
★同类拓展2 如图1-14甲所示,悬挂在O点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A.在两次实验中,均缓慢移动另一带同种电荷的小球B.当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B的电荷量分别为
q1和q2,θ分别为30°和45°,则 为 [2007年高考·重庆理综卷]( )
图1-14甲
A.2 B.3 C.2 D.3
【解析】对A球进行受力分析,如图1-14 乙所示,
由于绳子的拉力和点电荷间的斥力的合
力与A球的重力平衡,故有:F电=mgtanθ,
又F电=k .设绳子的长度为L,则A、B
两球之间的距离r=Lsinθ,联立可得:q=
, 由此可见, q与tanθsin2θ
成正比,即 ,故选项C正确.
[答案] C
互动辨析 本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.
图1-14乙
三、牛顿运动定律的应用
要点归纳
(一)深刻理解牛顿第一、第三定律
1.牛顿第一定律(惯性定律)
一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.
(1)理解要点
①运动是物体的一种属性,物体的运动不需要力来维持.
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.
③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.
(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.
①惯性是物体的固有属性,与物体的受力情况及运动状态无关.
②质量是物体惯性大小的量度.
2.牛顿第三定律
(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.
(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.
(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.
(二)牛顿第二定律
1.定律内容
物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.
2.公式:F合=ma
理解要点
①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.
②方向性:a与F合都是矢量,方向严格相同.
③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.
3.应用牛顿第二定律解题的一般步骤:
(1)确定研究对象;
(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;
(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;
(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;
(5)统一单位,计算数值.
热点、重点、难点
一、正交分解法在动力学问题中的应用
当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.
1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.
2.Fx合=max合,Fy合=may合,Fz合=maz合.
3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.
●例6 如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t1=2 s后停止,小球沿细杆运动的部分v-t图象如图1-15乙所示.试求:(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)
图1-15
(1)小球在0~2 s内的加速度a1和2~4 s内的加速度a2.
(2)风对小球的作用力F的大小.
【解析】(1)由图象可知,在0~2 s内小球的加速度为:
a1= =20 m/s2,方向沿杆向上
在2~4 s内小球的加速度为:
a2= =-10 m/s2,负号表示方向沿杆向下.
(2)有风力时的上升过程,小球的
受力情况如图1-15丙所示
在y方向,由平衡条件得:
FN1=Fsin θ+mgcos θ
在x方向,由牛顿第二定律得:
Fcos θ-mgsin θ-μFN1=ma1 图1-15丙
停风后上升阶段,小球的受力情况如图1-15丁所示
在y方向,由平衡条件得:
FN2=mgcos θ
在x方向,由牛顿第二定律得:
-mgsin θ-μFN2=
------【以上为无格式内容概要,如需完整内容请下载】------