登录 / 注册
首页>人教版高中数学必修3>3.1.2概率的意义

免费下载高中必修3数学公开课《3.1.2概率的意义》课件ppt

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
免费下载高中必修3数学公开课《3.1.2概率的意义》课件ppt免费下载高中必修3数学公开课《3.1.2概率的意义》课件ppt
3.1 随机事件的概率
3.1.2 概率的意义
问题提出
1.在条件S下进行n次重复实验,事件A出现的频数和频率的含义分别如何?
2.概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何?
联系:概率是频率的稳定值;
区别:频率具有随机性,概率是一个
确定的数;
范围:[0,1].
概率的意义
探究(一): 概率的正确理解
思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?
“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”.
思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?
思考3:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律?
“两次正面朝上”的频率约为0.25,“两次反面朝上” 的频率约为0.25,“一次正面朝上,一次反面朝上” 的频率约为0.5.
思考5:如果某种彩票的中奖概率为

,那么买1000张这种彩票一定能

中奖吗?为什么?
不一定,理由同上. 买1 000张这种彩票的中奖概率约为
1-0.9991000≈0.632,即有63.2%的可能性中奖,但不能肯定中奖.
探究(二):概率思想的实际应用
随机事件无处不有,生活中处处有概率.利用概率思想正确处理、解释实际问题,应作为学习的一重要内容.
思考1:在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?
裁判员拿出一个抽签器,它是-个像大硬币似的均匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿圈那面朝上。如果他猜对了,就由他先发球,否则,由另一方先发球. 两个运动员取得发球权的概率都是0.5.
思考2:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?
不公平,因为各班被选中的概率不全相等,七班被选中的概率最大.
思考3:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.
思考4:天气预报是气象专家依据观测到的气象资料和专家们的实际经验,经过分析推断得到的.某地气象局预报说,明天本地降水概率为70%,能否认为明天本地有70%的区域下雨,30%的区域不下雨?你认为应如何理解?
降水概率≠降水区域;明天本地下雨的可能性为70%.
思考5:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?
不能,概率为90%的事件发生的可能性很大,但“明天下雨”是随即事件,也有可能不发生.收集近50年同日的天气情况,考察这一天下雨的频率是否为90%左右.
思考6:奥地利遗传学家孟德尔从1856年开始用豌豆作试验,他把黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,他把第一年收获的黄色豌豆再种下,收获的豌豆既有黄色的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形的.第二年,他把第一年收获的圆形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第一年长出来的都是长茎的豌豆. 第二年,他把这种杂交长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌豆.试验的具体数据如下:
孟德尔的豌豆实验表明,外表完全相同的豌豆会长出不同的后代,并且每次试验的显性与隐性之比都接近3︰1,这种现象是偶然的,还是必然的?我们希望用概率思想作出合理解释.
思考7:在遗传学中有下列原理:
(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.
(2)用符号AA代表纯黄色豌豆的两个特征,符号BB代表纯绿色豌豆的两个特征.
(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:AB.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为: AA,AB,BB.
黄色豌豆(AA,AB)︰绿色豌豆(BB)
≈3︰1
(4)对于豌豆的颜色来说.A是显性因子,B是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即AA,AB都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即BB呈绿色.
在第二代中AA,AB,BB出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?
知识迁移
例1 为了估计水库中的鱼的尾数,先从水库中捕出2 000尾鱼,给每尾鱼作上记号(不影响其存活),然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出500尾鱼,其中有记号的鱼有40尾,试根据上述数据,估计这个水库里鱼的尾数.
例2 在足球点球大战中,球的运行只有两种状态,即进球或被扑出.球员射门有6个方向:中下,中上,左下,左上,右下,右上,门将扑球有5种选择:不动.左下,右下,左上,右上.如果
①不动可扑出中下和中上两个方向的点球;②左下可扑出左下和中下两个方向的点球;③右下可扑出右下和中下两个方向的点球;④左上可扑出左上方向的点球;
⑤右上可扑出右上方向的点球.
那么球员应选择哪个方向射门,才能使进球的概率最大?
小结作业
1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.
2.孟德尔通过试验、观察、猜想、论证,从
豌豆实验中发现遗传规律是一种统计规律,
这是一种科学的研究方法,我们应认真体会
和借鉴.
3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.
作业:
P118 练习:3.
P123习题3.1A组:2,3.