五年级数学下册教案2、5、3的倍数特征人教新课标1
以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
能被3整除的数的特征
教学目标:
1.知识与技能:理解掌握能被3整除的数的特征。会运用能被3整
除数的特征解答问题。
2.过程与方法:通过数形结合,培养学生观察、分析、推理、判断和动手操作能力。
3.情感、态度与价值观:学生通过实验探究和集体协作获取知识,培养实践能力和创新意识。
教学重点:掌握能被3整除的数的特征,并运用特征解决实际问题。
教学难点:理解能被3整除的数的特征。
教具准备:实物投影仪,实验记录表。
学具准备:小棒、实验记录表。
教学过程:
一、复习
师:同学们,我们已经掌握了能被2、5整除数的特征,你能用3、4、5三个数字很快组成能被2整除的三位数吗?
生:354、534能被2整除。(板书)
师:你们同意吗?
生:同意。
师:怎样的数能被2整除呢?
生:一个数的个位是0、2、4、6、8,这个数能被2整除。
师:你能用3、4、5再很快组成能被5整除的三位数吗?
生:345、435能被5整除。(板书)
师:能被5整除的数的特征怎样?
生:一个数的个位上是0或5,这个数能被5整除。
师:你们同意吗?
设疑,引入新课。
师:那么,用3、4、5这三个数字能不能组成能被3整除的三位数呢?请同位合作试试组一组、算一算看。
生:我组成453能被3整除,543能被3整除。(板书)
师:请同学们分组合作算一算354、534、345、435是否能被3整除?
生:都能被3整除。
师:奇怪,这三个数字不论怎样排列,所得到的三位数都能被3整除。到底能被3整除的数有什么特征呢?这节课我们一起来学习能被3整除的数的特征。(板书课题)
二、学习新课:
师:下面我们用摆小棒的实验来寻找能被3整除的数的特征好吗?
生:好。
师:(出示一张数位表和实验记录表)请同学们拿出实验记录表。实验的方法是这样的:用小棒在数位表上摆数。把1根小棒放在个位上表示1,放在十位上表示10,放在百位上表示100,每摆出一个数,就把数记在相应的格上,并判断一下这个数与小棒的根数能不能被3整除。如果能就在相应的格中打“√”,如果不能,就打“ ×”。例如:用1根小棒摆出的数是1、10、100,把数记在相应的格上,它们都不能被3整除,就在用1根小棒摆出的数的格里划一个“×”。明白吗?
生:明白。
师:现在你们用2根小棒试一试,看你所摆出什么数并算一算它们是否能被3整除?
生:(操作)我们用2根小棒摆出的数是11、2、20、101……这些数都不能被3整除,就在2根小棒相应的格里打“×”。
师:你们真聪明,一下子就掌握这个实验方法,下面分小组进行摆小棒的实验。你们要分工协作,一些同学摆,一些同学算并有同学做记录。看哪一组实验完成得又快又好。(实物投影演示)要求:用3根至12根小棒摆数。摆好以后再算一算,用哪几根小棒摆出的数能被3整除?用哪几根小棒摆出的数不能被3整除?摆出的数与小棒的根数有什么联系?能被3整除的数有什么特征?(开始实验)
师:请各小组汇报实验情况。(用投影出示各小组的实验记录表,学生边回答老师边板书:用3根、6根、9根、12根小棒摆出的数都能被3整除,用4、5、7、8、10、11根小棒摆出的数都不能被3整除)
师:请同学们根据出示的提纲观察实验记录表,再分组讨论。(出示提纲)(1)摆出能被3整除的数的小棒根数有什么特征?(2)能被3整除的数各数位上的数与小棒的根数有什么关系?(3)试说说能被3整除的数的特征。
生1:小棒的根数与3成倍数关系。
生2:凡是小棒的根数能被3整除的,摆出的数就能被3整除。
生3:摆出的数的各个位上的数加起来的和刚好等于小棒的根数。
师:观察4、5、7、8、10、11根小棒与摆出的数为什么不能被3整除?
生:因为4、5、7、8、10、11根小棒的根数不是3的倍数,这些小棒摆出的数的各数位上的和都不能被3整除,所以这些小棒和它所摆出的数都不能被3整除。
师:不能被3整除的数又有什么特征?
生:不能被3整除的数的各数位上的和都不能被3整除,所以这些数都不能被3整除。
师:好!通过摆小棒的实验,同学们发现了规律,谁能运用这个规律概括出能被3整除的数的特征?(先同位说一说)
生1:只要把一个数各个数位上的数加起来的和看它能不能被3整除,如果能这个数就能被3整除。
生2:一个数的各位上的数的和能被3整除,这个数就能被3整除。
生3:一个数各数位上的和是3的倍数,这个数就能被3整除
师:很好,我们来看看书上54页是怎样说的。(请同学们打开课本),能被3整除的数的特征请同学们齐读一次。(板书:54页并板书能被3整除的数的特征)你们细心观察能被3整除的数的特征,指出哪些词语是重点?用笔划出来?
生:“各个”、“和”。
师:“各个”、“和”各指什么意思?你能举例说明吗?
生:“各个”是指所有数位上的数,“和”是加起来的意思。例如 :看321是否能被3整除,只要把312(3加1加2得6),6能被3整除,那么312就能被3整除。
师:现在你们再看一看为什么用3、4、5、这三个数字摆出的数354、534、345、435、453、543无论怎样排列这些数都能被3整除?
生1:因为这些数各数位上的数的和能被3整除,所以这些数都能被3整除。
生2:因为这些数无论怎样排列,所摆出的数各位上的和都没有变化,所以这些数都能被3整除。
师:表扬这个同学。希望同学们能理解这句话的意思来记它的特征。好,请同学们再读一次能被3整除的数的特征。下面看谁能运用能被3整除的数的特征来解决下面的问题。
三、巩固练习:
(1)请同学们看书54页完成做一做:下面哪些数能被3整除?54、83、114、262、837(投影)如果能被3整除的,就在数字下面打“√”。并同位说出理由。
生:54、114、837都能被3整除。
师:为什么114能被3整除?
生:因位114各位上的数加起来的和得6,6能被3整除,所以114能被3整除。
师:83为什么不能被3整除?
生:因为83各个数位上的数加起来的和等于11,11不能被3整除,所以83也不能被3整除。
师:同意的举手。怎样改一改83数位上的数字,使它变成能被3整除呢?为什么?
生:我把个位上的8改成9,或把十位上的3改成1或4或7……,就得93、81、84、87等。这些数都能被3整除。
师:为什么把83改成93就能被3整除?
生:因为把83改成93,把各数位上的数加起来得12,12能被3整除,所以93就能被3整除。
师:好,同学们再来看这一道题:(2)在下列各数的□中,填上几,这个数就能被3整除:
17□,4□2。(投影)同学们在堂上本做。先看17□,可以填几?
生:填上1。
师:还有吗?
生:填上4或7。
师:还有吗?
生:(齐)没有了。
师:这样的题该怎么想?
生:把各个数位上的数加起来,看看与3的倍数相差几,就填几。如:1加7得8,8不是3的倍数,9和8相差1,就在□里先填上1。
师:确定了1就好办了,在1的基础上怎样?
生:依次加上3就得4或7。好,再看4□2,你能一下子填完全吗?
生:填3、6、9。
师:还有吗?
生:还有0。
师:对了,只要先想到0,然后怎样?
生:依次加3就得3、6、9。
师:很好,填这些数的时候答案不唯一,哪很快把所有答案找出来的秘密是什么?
生:只要保证把各个数位上的数加起来的和能被3整除,这个数就能被3整除。
师:好,同学们都能灵活运用能被3整除的数的特征。(3)老师这里有一些卡片,卡片上的数可能能被2整除,也可能能被5整除,还可能能被3整除,请你用手势表示,它到底能被几整除。
[卡片一:58] 生:伸出2个手指。
[卡片二:207] 生:伸出3个手指。
师:为什么207能被3整除?
生:因为207各位上的数的和能被3整除,所以这个数能被3整除。
[卡片三:1 1 5 ] 生:伸出5个手指。
[卡片四:80] 生:伸出2和5个手指。
师:为什么80能同时被2、5整除?
生:因为个位上是0的数都能同时被2、5整除。
[卡片五:645] 生:伸出3和5个手指。
师:为什么645能同时被3、5整除?
生:因为个位上是5,而且各位上的数的和能被3整除的,这个数就能同时被3、5整除。
[卡片六:108] 生:伸出2和3个手指。
师:好,同学们对能被2、3、5整除的数的特征都掌握得不错。下面你们能写出一个能同时被2、3、5整除的三位数吗?怎样的数才能同时被2、3、5整除呢?请同学们试试写写看。(请四个同学出黑板写)怎样的数才能同时被2、3、5整除?
生:一个数的个位是0,而且各个数位上的和能被3整除的,这个数就能同时被2、3、5整除。
(集体订正黑板上的数)
师:同学们,老师这里有一个很大的数(板书):
369396945,不用计算,谁能很快判断它能不能被3整除吗?你为什么想得这么快呢?
生:我看到用3、6、9组成的数不用计算就可以马上判断它能被3整除。这个数3、6、9就不用加,只要看4加5的和是否能被3整除,剩下的数4加5得9,9能被3整除,所以这个数不用计算就肯定它能被3整除。
师:说得好,这个同学能灵活地运用了规律。再看这个数是否能被3整除?(板书):100000002。
生:能。
师:为什么?
生:因为这个数各位上的数加起来的和得3,3能被3整除,所以这个数能被3整除。
师:(板书)这个数呢?239126393
生:不能。
师:为什么?
生:这个数的3、6、9能被整除,把2加1加2得5,5不能被3整除,所以这个数就不能被3整除。
师:好,以后要判断一个较大的数能否被3整除,见到3的倍数就消,把剩下的数加起来的和看是否能
被3整除,就确定这个数能否被3整除。
四、小结:
同学们,这节课我们学习了什么?
生:学习了能被3整除的数的特征,并运用能被3整除的数的特征来判断一个数能否被3整除。
师:希望同学们今后能灵活地运用能被2、3、5整除的数的特征来解决实际问题。这节课就学习到这里。
全课板书:能被3整除的数的特征
3、4、5
能被2整除的数:354、534
能被5整除的数:345、435 都能被3整除
543、453
一个数的各位上的数的和能被3整除,这个数就能被3整除。
能被3整除的: 不能被3整除的:
3根: 3、12、111 4根: 4、13、112
6根: 6、15、123 5根: 5、14、203
9根: 9、18、207 7根: 7、16、322
12根:39、48、336 8根: 8、17、413
10根:19、28、313
11根:29、47、506