免费下载高中数学必修3教研课《1.3.2秦九韶算法》PPT课件
以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
案例2 秦九韶算法
[问题1]设计求多项式f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7当x = 5时的值的算法,并写出程序.
x=5
f=2*x^5-5*x^4-4*x^3+3*x^2-6*x+7
PRINT f
END
程序
点评:上述算法一共做了15次乘法运算,5次加法运算.优点是简单,易懂;缺点是不通用,不能解决任意多项多求值问题,而且计算效率不高.
这时,计算上述多项式的值,一共需要9次乘法运算,5次加法运算.
[问题2]有没有更高效的算法?
分析:计算x的幂时,可以利用前面的计算结果,以减少计算量
即先计算x2,然后依次计算
x2 x , (x2 x) x , ((x2 x) x) x的值.
第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率.而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.
[问题3]能否探索更好的算法,来解决任意多项式的求值问题?
f(x)=2x5-5x4-4x3+3x2-6x+7
=(2x4-5x3-4x2+3x-6)x+7
=((2x3-5x2-4x+3)x-6)x+7
=(((2x2-5x-4)x+3)x-6)x+7
=((((2x-5)x-4)x+3)x-6)x+7
v0=2
v1=v0x-5=2×5-5=5
v2=v1x-4=5×5-4=21
v3=v2x+3=21×5+3=108
v4=v3x-6=108×5-6=534
v5=v4x+7= 534×5+7=2677
所以,当x=5时,多项式的值是2677.
这种求多项式值的方法就叫秦九韶算法.
例3:用秦九韶算法求当x = 5时多项式 f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7的值.
解法一:首先将原多项式改写成如下形式 : f(x)=((((2x-5)x-4)x+3)x-6)x+7
v0=2 v1=v0x-5=2×5-5=5
v2=v1x-4=5×5-4=21
v3=v2x+3=21×5+3=108
v4=v3x-6=108×5-6=534
v5=v4x+7=534×5+7=2677
所以,当x=5时,多项式的值是2677.
然后由内向外逐层计算一次多项式的值,即
2 -5 -4 3 -6 7
x=5
10
5
25
21
105
108
540
534
2670
2677
所以,当x=5时,多项式的值是2677.
原多项式的系数
多项式的值.
解法二:列表
2
例3:用秦九韶算法求当x = 5时多项式 f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7的值.
2 -5 0 -4 3 -6 0
x=5
10
5
25
25
125
121
605
608
3040
3034
所以,当x=5时,多项式的值是15170.
练一练:用秦九韶算法求多项式 f(x)=2x6-5x5-4x3+3x2-6x当x=5时的值.
解:原多项式先化为:
f(x)=2x6-5x5 +0×x4-4x3+3x2-6x+0
列表
2
15170
15170
f(x)=anxn+an-1xn-1+an-2xn-2+……+a1x+a0.
我们可以改写成如下形式:
f(x)=((anx+an-1)x+an-2)x+…+a1)x+a0.
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v1=anx+an-1,
然后由内向外逐层计算一次多项式的值,即
一般地,对于一个n次多项式
v2=v1x+an-2,
v3=v2x+an-3, ……,
vn=vn-1x+a0.
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.这种算法称为秦九韶算法.
秦九韶算法是求一元多项式的值的一种方法.
它的特点是:把求一个n次多项式的值转化为求n个一次多项式的值,通过这种转化,把运算的次数由至多n(n+1)/2次乘法运算和n次加法运算,减少为n次乘法运算和n次加法运算,大大提高了运算效率.
思考
v1=anx+an-1,
v2=v1x+an-2,
v3=v2x+an-3, ……,
vn=vn-1x+a0.
观察上述秦九韶算法中的n个一次式,可见vk的计算要用到vk-1的值.
若令v0=an,得
这是一个在秦九韶算法中反复执行的步骤,因此可用循环结构来实现.
[问题] 写出程序表示用秦九韶算法求5次多项式f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0当x=x0 (x0是任意实数)时的值的过程.
INPUT "n=";n
input "an=";a
input "x=";x
v = a
i = n – 1
while i >= 0
print "i = ";i
input "ai = ";a
v = v * x + a
i = i – 1
wend
print v
end
程序