以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
《成正比例的量》教学设计
教学内容:成正比例的量
教学目标:
知识与技能:使学生理解正比例的意义,会正确判断成正比例的量。
过程与方法:使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一、揭示课题
1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
5、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二、探索新知
1、教学例1
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
高度/㎝
2
4
6
8
10
12
体积/立方厘米
50
100
150
200
250
300
底面积/平方厘米
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加; 一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
1、教学例2。
(1)、出示表格(见书)
(2)、依据下表中的数据描点。(见书)
(3)、从图中你发现了什么?
这些点都在同一条直线上。
1、看图回答问题。
①、如果杯中水的高度是7㎝,那么水的体积是多少?
生:175立方厘米
、体积是225立方厘米的水,杯里水面高度是多少?
生:9㎝。
③、杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?
生:水的体积是350立方厘米,相对应的点一定在这条直线上。
2、你还能提出什么问题?有什么体会?
通过交流使学生了解成正比例量的图像特往。
3、做一做。
过程要求:
(1)、读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?
比值表示每小时行驶多少千米。
(2)、表中的路程和时间成正比例吗?为什么?
成正比例。理由:路程随着时间的变化而变化;
①、时间增加,路程也增加,时间减少,路程也随着减少;
②、路程和时间的比值(速度)一定。
③、在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。
④、行驶120KM大约要用多少时间?
⑤、你还能提出什么问题?
4、课堂小结:说一说成正比例关系的量的变化特征。
三、巩固练习
完成《练习册》第15、16页的练习。