中考复习第七章 圆
三角形的内切圆
(一)提出问题
如图,你能否在△ABC中画出一个圆?画出一个最大的圆
?想一想,怎样画?
例1 作圆,使它和已知三角形的各边都相切.
(1)作圆的关键是什么?
提出以下几个问题进行讨论:
(2)假设⊙I是所求作的圆,⊙I和三
角形三边都相切,圆心I应满足什么
条件?
(3)这样的点I应在什么位置?
(4)圆心I确定后半径如何找?
结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.
(二)新课
1. 什么是三角形的内切圆?
2、想一想,三角形内心和外心的区别?
和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
外心(三角形外接圆的圆心)
和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.
3. 什么是三角形的内切圆?
(三)应用与反思
例2 如图,在△ABC中,∠ABC=50°,∠ACB=75°“,点O是三角形的内心 求∠BOC的度数.
例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D.
求证:DE=DB
练习 分析作出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角形的内心是否都在三角形内.
(四)小结
1.学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.
2.利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.
3.在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.
能力训练
(A)梯形 (B)菱形 (C)矩形 (D)平行四边形
1、下列图形中,一定有内切圆的四边形是( )
2、如图,菱形ABCD中,周长为40,∠ABC=120°,则内切圆的半径为( )
3、如图,⊙O是△ABC的内切圆,D、E、F是切点,∠A=50°,∠C=60°,则∠DOE=( )
(A)70° (B)110°
(C)120° (D)130°
4、等边三角形的内切圆半径、外接圆的半径和高的比为( )
5、存在内切圆和外接圆的四边形一定是( )
(A)矩形 (B)菱形 (C)正方形 (D)平行四边形
6、画一个边长为3cm的等边三角形,在画出它的内切圆.
7、(山西省,1998)如图,已知点I为△ABC的内心,射线AI交△ABC的外接圆于点D,交BC边于点E.
参考答案与提示:BDBDC
提示:(1)与典型例题2一样;
(2)由 ,∴ ,
∵BD
∴自变量x的取值范围是2