登录 / 注册
首页>人教版初中数学九年级上册>24.2 点和圆、直线和圆的位置关系
  • 资料信息
  • 科目: 

    人教版初中数学九年级上册 - 24.2 点和圆、直线和圆的位置关系

  • 格式:  PPT
  • 大小:  2.01M    24张
  • 时间:  2015-09

24.2点、直线、圆和圆的位置关系 (3)

以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
24.2点、直线、圆和圆的位置关系 (3)24.2点、直线、圆和圆的位置关系 (3)
直线与圆的位置关系
切线长定理
50°

1、如何过⊙O外一点P画出⊙O的切线?
2、这样的切线能画出几条?
如下左图,借助三角板,我们可以画出PA是⊙O的切线。
3、如果∠P=50°,求∠AOB的度数
130°

O

A
B
P
课外补充
思考:已画出切线PA、PB,A、B为切点,则∠OAP= °,连接OP,可知A、B 除了在⊙O上,还在怎样的圆上?
90
如何用圆规和直尺作出这两条切线呢?
尺规作图:
过⊙O外一点作⊙O的切线
O
·
P
A
B
O
请跟我做
在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长
·
O
P
A
B
切线与切线长是一回事吗?
切线长概念
·
它们有什么区别与联系呢?
切线和切线长是两个不同的概念:
1、切线是一条与圆相切的直线,不能度量;
2、切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
切线和切线长

O
A
B
P
1
2
请证明你所发现的结论。
PA = PB
∠OPA=∠OPB
证明:∵PA,PB与⊙O相切,点A,B是切点
∴OA⊥PA,OB⊥PB 即∠OAP=∠OBP=90°
∵ OA=OB,OP=OP
∴Rt△AOP≌Rt△BOP(HL)
∴ PA = PB ∠OPA=∠OPB
试用文字语言叙述你所发现的结论
PA、PB分别切⊙O于A、B
PA = PB
∠OPA=∠OPB
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
几何语言:
反思:切线长定理为证明线段相等、角相等提供新的方法
A
P
O
B
若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.
OP垂直平分AB
证明:∵PA,PB是⊙O的切线,点A,B是切点
∴PA = PB ∠OPA=∠OPB
∴△PAB是等腰三角形,PM为顶角的平分线
∴OP垂直平分AB
A
P
O

B
若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.
CA=CB
证明:∵PA,PB是⊙O的切线,点A,B是切点
∴PA = PB ∠OPA=∠OPB
∴PC=PC
∴ △PCA ≌ △PCB ∴AC=BC
C

P
B
A
O
(3)连结圆心和圆外一点
(2)连结两切点
(1)分别连结圆心和切点
反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。
(2)已知OA=3cm,OP=6cm,则∠APB=
P
A
B
C
O
60°
(4)OP交⊙O于M,则 ,AB OP
AM=BM
M

牛刀小试
(3)若∠P=70°,则∠AOB= °
110
(1)若PA=4、PM=2,求圆O的半径OA
OA=3
已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12CM,求△PEF的周长。
易证EQ=EA, FQ=FB,
PA=PB
∴ PE+EQ=PA=12cm
PF+FQ=PB=PA=12cm
∴周长为24cm
探究:PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。

B
A
P
O
C
E
D
(1)写出图中所有的垂直关系
OA⊥PA,OB ⊥PB,AB ⊥OP
(3)写出图中所有的全等三角形
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP
(4)写出图中所有的等腰三角形
△ABP △AOB
(2)写出图中与∠OAC相等的角
∠OAC=∠OBC=∠APC=∠BPC
例1、已知:P为⊙O外一点,PA、PB为⊙O的
切线,A、B为切点,BC是直径。
求证:AC∥OP
P
A
C
B
D
O
练习1.(口答)如图所示PA、PB分别切
圆O于A、B,并与圆O的切线分别相交于
C、D,已知PA=7cm,
(1)求△PCD的周长.
(2) 如果∠P=46°,求∠COD的度数
C
· O
P
B
D
A
E
切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两 条切线的夹角。
∵PA、PB分别切⊙O于A、B
∴PA = PB ,∠OPA=∠OPB
OP垂直平分AB
切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。
我们学过的切线,常有 五个 性质:
1、切线和圆只有一个公共点;
2、切线和圆心的距离等于圆的半径;
3、切线垂直于过切点的半径;
4、经过圆心垂直于切线的直线必过切点;
5、经过切点垂直于切线的直线必过圆心。
6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
六个
例3 、如图,四边形ABCD的边AB、BC、CD、DA和圆⊙O分别相切于点L、M、N、P,
求证: AD+BC=AB+CD
证明:由切线长定理得
∴AL=AP,LB=MB,NC=MC,
DN=DP
∴AL+LB+NC+DN=AP+MB+MC+DP
即 AB+CD=AD+BC
补充:圆的外切四边形的两组对边的和相等.
例4.如图,△ABC中,∠C =90º ,它的
内切圆O分别与边AB、BC、CA相切
于点D、E、F,且BD=12,AD=8,
求⊙O的半径r.
练习2.如图,AB是⊙O的直径,AD、DC、BC是切线,点A、E、B为切点,
(1)求证:OD ⊥ OC
(2)若BC=9,AD=4,求OB的长.
O
A
B
C
D
E
选做题:如图,AB是⊙O的直径,
AD、DC、BC是切线,点A、E、B
为切点,若BC=9,AD=4,求OE的长.
衷心感谢您的参与!
再见!