以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
圆的面积
1、掌握圆面积公式的推导;
2、用公式解简单的应用题。
目标:
小明学校的操场如上图所示,今年暑假期间在操场上铺设了一层塑胶,请同学们想一想,如何才能计算出操场的面积是多少了?
操场的面积=长方形的面积+圆的面积
长方形所占平面的大小叫做长方形的面积。
复习面积概念
圆所占平面的大小叫做圆的面积。
S = ab
S = ah
S = ah÷2
S = (a+b)h÷2
有关直线型图形面积的计算
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
圆面积公式的推导
一、将圆分成若干等分。
二、用等分后的小块组成不同的形状
近似平行四边形
近似三角形
近似梯形
圆面8等分时:
圆面16等分时:
圆面32等分时:
三、以近似平行四边形为例,我们可以看出如果将圆等分的分数越多,其面积就越接近于长方形的面积。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
讨论:
1、“近似长方形”的长与圆的周长有什么关系?
2、“近似长方形”的宽与圆的半径有什么关系?
结论:
1、近似长方形的长与圆周长的一半大致相等。
2、近似长方形的宽与圆的半径大致相等。
即:
a=πr
b=r
圆面积 近似等于 长方形面积
圆面积 近似等于 πr× r
当分割的无限细密时:
思考:请同学们将分成的小块拼成右图的形状再推导圆面积的公式。
(1)已知圆的半径为2厘米,求圆的面积和圆的周长。
(2)已知圆的直径为6分米,求圆的面积。
(3)已知圆的周长为25.12米,求圆的面积。
1.例题
2.判断:
(1)圆的半径扩大到原来的3倍,圆的面积也扩大原来的3倍。 ( )
(2)圆的直径扩大到原来的10倍,圆的面积扩大原来的100倍。 ( )
(3) 圆的周长扩大到原来的2倍,圆的面积扩大原来的2倍。 ( )
3.小明学校的操场如上图所示,今年暑假期间在操场上铺设了一层塑胶,设长为100米,宽为50米,请计算出操场的面积是多少了?
操场的面积=长方形的面积+圆的面积
4.应用题:(1)如下图(草地),绳长为3米,问小羊的吃草面积有多大?
(2)如小羊的身子长为2米,问小羊脚踩在地上的面积为多少?
小结:
1.掌握用“割补法”推导圆的面积公式,其中还用到了“无限逼近”和“化曲为直”的思想方法。
2.熟记圆的面积公式。
3.掌握已知半径,直径,周长求圆面积。