人教版原创高中数学必修3《2.1.2系统抽样》课件ppt免费下载
以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
系统抽样
简单随机抽样的概念
适用范围:总体中个体数较少的情况,抽取的样本容量也较小时。
复习回顾:
一般地,设一个总体的个体数为N,如果通过逐个不放回地抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
用抽签法抽取样本的步骤:
简记为:编号;制签;搅匀;抽签;取个体。
用随机数表法抽取样本的步骤:
简记为:编号;选数;读数;取个体。
知识回顾
1、简单随机抽样包括________和____________.
抽签法
随机数表法
2、在简单随机抽样中,某一个个体被抽到的可能性是( )。
A.与第几次抽样有关,第一次抽的可能性最大
B.与第几次抽样有关,第一次抽的可能性最小
C.与第几次抽样无关,每次抽到的可能性相等
D.与第几次抽样无关,与抽取几个样本无关
C
知识探究(一):简单随机抽样的基本思想
思考1:某中学高一年级有12个班,每班50人,为了了解高一年级学生对老师教学的意见,教务处打算从年级600名学生中抽取60名进行问卷调查,那么年级每个同学被抽到的概率是多少?
思考2:你能用简单随机抽样对上述问题进行抽样吗?具体如何操作?
思考4:如果从600件产品中抽取60件进行质量检查,按照上述思路抽样应如何操作?
第二步,将总体平均分成60部分,每一部分含10个个体.
第四步,从该号码起,每隔10个号码取一个号码,就得到一个容量为60的样本.
(如8,18,28,…,598)
第三步,在第1部分中用简单随机抽样抽取一个号码(如8号).
第一步,将这600件产品编号为1,2,3,…,600.
思考5:上述抽样方法称为系统抽样,一般地,怎样理解系统抽样的含义?
系统抽样:
当总体的个体数较多时,采用简单随机抽样太麻烦,这时将总体平均分成几个部分,然后按照预先定出的规则,从每个部分中抽取一个个体,得到所需的样本,这样的抽样方法称为系统抽样(等距抽样)。
系统抽样的特点:
(1)用系统抽样抽取样本时,每个个体被抽到的可能性是相等的,
(2)系统抽样适用于总体中个体数较多,抽取样本容量也较大时;
(3)系统抽样是不放回抽样。
知识探究(二):系统抽样的操作步骤
思考1:用系统抽样从总体中抽取样本时,首先要做的工作是什么?
将总体中的所有个体编号.
思考2:如果用系统抽样从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,对此应如何处理?
先从总体中随机剔除5个个体,再均衡分成60部分.
思考3:用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,要平均分成多少段,每段各有多少个号码?
思考4:如果N不能被n整除怎么办?
从总体中随机剔除N除以n的余数个个体后再分段.
思考5:将含有N个个体的总体平均分成n段,每段的号码个数称为分段间隔,那么分段间隔k的值如何确定?
总体中的个体数N除以样本容量n所得的商.
用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k.
思考6:用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?
思考7:一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,其操作步骤如何?
系统抽样的步骤:
(1)采用随机的方式将总体中的个体编号;
(2)将整个的编号按一定的间隔(设为K)分段,当
(N为总体中的个体数,n为样本容量)是整数
时, ;当 不是整数时,从总体中剔除一些
个体,使剩下的总体中个体的个数 能被n整除,这
时, ,并将剩下的总体重新编号;
(3)在第一段中用简单随机抽样确定起始的个体编号 ;
(4)将编号为 的个体抽出。
简记为:编号;分段;在第一段确定起始号;加间隔获取样本。
思考8:系统抽样与简单随机抽样比较,有何优、缺点?
点评:(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;
(2)系统抽样的效果会受个体编号的影响,而简单随机抽样的效果不受个体编号的影响;系统抽样所得样本的代表性和具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.例如学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取的样本就可能会是全部男生或全部女生.
(3)系统抽样比简单随机抽样的应用范围更广.
思考9:在数字化时代,各种各样的统计数字和图表充斥着媒体,由于数字给人的印象直观、具体,所以让数据说话是许多广告的常用手法.下列广告中的数据可靠吗?
“现代研究证明,99%以上的人皮肤感染有螨虫…….”
“……美丽润肤膏,含有多种中药成分,可以彻底清除脸部色斑,只需10天,就能让你的肌肤得到改善.”
“……瘦体减肥灵真的灵,其减肥的有效率为75%.”
理论迁移
例1 某中学有高一学生322名,为了了解学生的身体状况,要抽取一个容量为40的样本,用系统抽样法如何抽样?
第一步,随机剔除2名学生,把余下的320名学生编号为1,2,3,…320.
第四步,从该号码起,每间隔8个号码抽取1个号码,就可得到一个容量为40的样本.
第三步,在第1部分用抽签法确定起始编号.
第二步,把总体分成40个部分,每个部分有8个个体.
2、采用系统抽样的方法,从个体数为1003的总体中抽取一个容量50的样本,则在抽样过程中,被剔除的个体数为( ),抽样间隔为( )。
3
20
练习:
1、某工厂生产产品,用传送带将产品送放下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是( )。
A.抽签法 B.随机数表法
C.系统抽样 D.其他
C
3、为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为( )
A、40 B、30 C、20 D、12
4、为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目( )
A、2 B、4 C、5 D、6
A
A
5、用系统抽样的方法从个体数为1003的总体中抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性为( )
A、1/1000 B、1/1003 C、50/1003 D、50/1000
6、从N个编号中抽取n个号码入样,用系统的方法抽样,则抽样的间隔为( )
A、N/n B、n C、[N/n] D、[N/n]+1
说明:[N/n]表示N/n的整数部分。
7、从已编号为1-50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能为( )
A、5,10,15,20,25 B、3,13,23,33,43
C、1,2,3,4,5 D、2,4,6,16,32
C
C
B
2.系统抽样适合于总体的个体数较多的情形,操作上分四个步骤进行,除了剔除余数个体和确定起始号需要随机抽样外,其余样本号码由事先定下的规则自动生成,从而使得系统抽样操作简单、方便.
小结作业
1.系统抽样也是等概率抽样,即每个个体被抽到的概率是相等的,从而保证了抽样的公平性.
两种抽样方法比较
分层抽样
问题 一个单位的职工500人,其中不到35岁的有125人,35到49岁的有280人,50岁以上的有95人。为了了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本。由于职工年龄与这项指标有关,试问:应用什么方法抽取?能在500人中任意取100个吗?能将100个份额均分到这三部分中吗?
分析:考察对象的特点是由具有明显差异的几部分组成。
分层抽样
问题一个单位的职工500人,其中不到35岁的有125人,35到49岁的有280人,50岁以上的有95人。为了了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本。由于职工年龄与这项指标有关,试问:应用什么方法抽取?能在500人中任意取100个吗?能将100个份额均分到这三部分中吗?
解:(1)确定样本容量与总体的个体数之比100:500=1:5。
(3)利用简单随机抽样或系统抽样的方法,从各年龄段分别抽取25,56,19人,然后合在一起,就是所抽取的样本。
强调两点:
(1)分层抽样是等概率抽样,它也是公平的。用分层抽样从个体为N的总体中抽取一个容量为n的样本时,在整个抽样过程中每个个体被抽到的概率相等 为n/N。
(2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此它获取的样本更具代表性,在实用中更为广泛。
分层抽样的抽取步骤:
(1)总体与样本容量确定抽取的比例。
(2)由分层情况,确定各层抽取的样本数。
(3)各层的抽取数之和应等于样本容量。
(4)对于不能取整的数,求其近似值。
4.三种抽样方法的比较
一个电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下所示:
很喜爱 喜爱 一般 不喜爱
2400 4200 3800 1600
打算从中抽取60人进行详细调查,如何抽取?
练习 :
在下列问题中,各采用什么抽样方法抽取样本较合适?
1、从20台电脑中抽取4台进行质量检测;
2、从2004名同学中,抽取一个容量为20的样本
3、某中学有180名教工,其中业务人员136名,管理人员20名,后勤人员24名,从中抽取一个容量为15的样本。
简单抽样
系统抽样
分层抽样
练习题:
1. 一批灯泡400只,其中20 W、40 W、60 W的数目之比为4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为______________.
20、15、5
2.从总体为.的一批零件中用分层抽样抽取一个容量为30的样本,若每个零件被抽取的机率为0.25,则N等于( )
A.150 B.200 C.120 D.100
C
3.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量n= 。
80
4.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n= .
192
解法一:由题意,因为200:1200:1000=1:6:5,所以女学生中抽取总人数的
,故N=80÷
=192.
解法二::由题意知,每个人被抽到的几率为 = ,
故n=(200+1200+1000)× =192。
答案:192
B
B
B
B
B
B
D
B
B
7,4,6
40,60,100
900