以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
有关电功率的计算例题
[例1]一只标有“PZ220-40”和一只标有“PZ220-100”的灯泡,若:(1)把它们并联在220V的电源上,问哪盏灯亮些?(2)把它们串联在220V的电源上,哪盏灯亮些?
[分析]灯泡的亮暗程度取决于实际功率的大小,因此只要求出并比较两只灯泡的实际功率,就可以判断它们的亮暗了。
[答](1)当两只灯泡并联在220V的电源线上时,有U实=U额,所以P实=P额。
因为“PZ220-100”的灯泡的额定功率大,所以此灯泡较亮。
(2)当两只灯泡串联在220V的电源线上时,根据串联电路的特点,
[例2]现有两个小灯泡,上面分别标有“6V, 1. 2W”和“12V,6W”字样,如果把这两个灯泡串联起来,为了使其中一个灯泡持续正常发光,那么加在串联电路两端的电压是 ( )
A.9.4V B.10.8V C.18V D.27V
[分析]要使其中一个灯泡能持续正常发光,必须先找出每盏灯正常发光时的电流,并以其中较小的电流作为两灯串联后的电流,然后求出电路两端的总电压。因
两灯串联后的总电阻R=R1+R2=30Ω+24Ω=54Ω。所以加在串联电路两端的电压为
U=IR=0.2×54V=10.8V
[答] B。
[例3]将“PZ220-100”的灯泡与总电阻是121Ω的滑动变阻器串联起来,接到220V的电源上,如图9-9示,调整滑动变阻器的阻值时,可使电灯的功率在多大范围内变化?
[分析]“PZ220-100”是指灯泡的额定电压220V和额定功率100w。当它与滑动变阻器串联后接入电路(图1)时,由于滑动变阻器的电阻发生变化,灯泡两端的实际电压和实际功率也随之变化。我们只要求出滑片在A,B两端点时灯泡的电压和实际功率即可。
[答]滑片在 A端时, RAB=12lΩ,与灯泡串联,灯泡电阻
滑片在B端时,RAB=0。此时灯泡两端的电压就等于电源电压,即
UL=U总=220V,PL实抇=100W[
答]灯泡的实际功率在64~100W之间变化。
[例4]将一只电炉的电阻丝剪成长度相等的两段,并联后接到原来的电源上(设电源电压保持不变),功率将变为 ( )
[分析]设原电炉的电阻丝电阻为R,剪成长度相等的两段后,每段阻
[答]B。
[说明]此题可引伸为相同时间电炉放出热量是原来的多少倍’?(由
[例5]电烙铁使用前需要一定的预热时间,因而即使暂时不用也要将它接到电源上,但这样既费电又会造成烙铁头氧化而不易沾锡,所以,有时采用如图2的所示的电路,在暂时不需要焊接时,断开电键S,使电烙铁处于预热状态;当需要焊接时,闭合电键S,就能很快达到焊接温度。现给一个“220V,25W”的电烙铁预热,若灯泡L在预热状态时的电阻为800Ω,则:(l)在预热状态下电烙铁消耗的功率为多少?(2)整个电路消耗的功率是电烙铁正常工作时消耗功率的百分之几?
[分析]电烙铁在预热状态时,相当于电烙铁和灯泡电阻串联在电路中,算出此时电烙铁消耗的功率即为电烙铁在预热状态下消耗的功率。
[解]根据题意可知,电源电压不变,在电烙铁处于预热状态时,相当
所以预热时的总电阻R=R1+R2=1936Ω+800Ω=2736Ω。此时通过灯泡及电烙铁的电流大小为
因电烙铁与灯泡构成串联电路,所以通过它们的电流均为0.08A。由P=I2R可知此时电烙铁消耗的电功率为
P’=(0.08)2×1936W=12.4W
同理,此时整个电路消耗的功率为
P=I2R=(0.08)2×2736W=17.5W
由于电烙铁正常工作时消耗的功率P0=25W,所以此时整个电路消耗的功率占电烙铁正常工作时消耗功率的百分比是
[答](l)预热时电烙铁的功率是12.4W;(2)整个电路消耗功率是电烙铁正常功率的70%。
[例6] 灯L1为“220V,100w”,灯L2为“220V,40W”,两灯串联在220伏电路中,哪盏灯亮?并联在220伏电路中,哪盏灯亮?两灯串联在380伏电路中,会发生什么现象?
[分析]铭牌“220V、 l00w”表示,此灯额定电压为220伏,额定
且电阻不变。比较灯的亮暗问题,就是要比较灯的实际功率大小问题,实际功率大的灯亮,还可根据中联分压,并联分流的
[例7] 如图(9-6)所示电路,电热器的电阻丝R1和定值电阻R2都是待测,当S1、S2都闭合时,经1分钟,电热器使水到达沸点,已知水的初温为20℃,水的质量为484克,当S1闭合S2断开时,电热器加热同样的初温和质量的水使其达到沸腾,需要4分钟。求R1和R2的阻值多大?(热损失不计,电源电压 220伏不变)
[分析]此题是一道电学和热学的综合题。电路是纯电阻电路,当S1、S2都闭合时,定值电阻R2被局部短路,电路中只有 Rl工作;当S1闭合S2断开时,R2和R1串联在一起工作。因为电流通过 R1放出的热量等于水吸收的热量。 Q吸=Q放,只要利用吸收热量公式 Q吸= Cm(t-t0)
解此题时要注意:①题中有个隐含条件是水的末温是100℃;②两次对水放热的都是R1。
[解]水两次吸收的热量相等,
Q吸=Cm(t-t0)=4.2×103焦/千克·℃×0.484千克×(100℃-20℃)=162624焦
当S1、S2都闭合时,R1两端的电压等于电路的总电压,根据焦耳
又∵Q放=Q吸=162624焦,
当S1闭合S2断开时,R14分钟放出的热量和前一次一样多,但R1两端电压只是总电压的一部分U1。则有
[例8]用粗细均匀的电阻丝加热烧水,通电10分钟可烧开一壶水,若将电阻丝对折起来使用,电源电压不变,烧开同样一壶水的时间是:
A.2.5分钟 B.5分钟 C.20分钟 D.30分钟
[分析]此题可知两次使用的电源电压相同,烧开同样一壶水所要吸收
[答]选A。
有关焦耳定律例题
[例1]某电热器通入电流为0.5A时,1min内产生 100J的热量。如果通过它的电流为1A时,则通电lmin产生的热量是多少?
[分析] 电热器通电产生的热量可由 Q=I2Rt求得,由于是同一电热器,可认为电阻R不变,电流变化后的放热,用比例法求解较方便。
[答]通电lmin产生的热量是400J。
[例2]一台洗衣机的电动机功率为 120w,在 220V电压下工作,求:(1)通电10min它消耗多少电能?(2)能不能算出在10min内产生的热量是多少?
[分析]要计算电动机消耗的电能,可计算电流做功,电流做了多少功,就消耗了多少电能。因电动机消耗的电能没有全部转化为热,因此发热和消耗的电能并不相等。
[解](1) W=Pt=120W×600S=7200J。
(2)不能,因为电流通过电动机时,只有一小部分电能转化为内能,而大部分的电能转化成机械能了。要想求电动机在10min内产生的热量,还要知道电动机正常运转时通过的电流和电动机线圈的电阻是多少,再利用公式Q=I2Rt计算。
[答](l)消耗电能7200J;(2)无法算出热量。
[例3]长短粗细均相等的铜丝、铁丝、铅丝串联在电路中,通电后 ( )
A.铜丝发热多 B.铁丝发热多.
C.铝丝发热多 D.三者相同
[分析]电流通过导体产生的热量Q=I2Rt,三根金属丝串联时,因为通电时间及电流强度均相等,且铁丝的电阻最大,所以铁丝发热最多。
[例4]某个电热水器内有两根电热丝,其中一根通电时电热水器中的水经15min沸腾,另一根通电时(电压不变)经过30min沸腾。假如把两根电热丝串联或并联起来,那么通电后要多少时间水才能沸腾?
[分析]由题意可知,不论是一根电热丝通电或者是两根电热丝(串联或并联)都通电,电热水器加热的水沸腾时,所需供给的热量是相等的。
[解]设第一根电热丝和第二根电热丝的电阻分别为R1和R2,电路上的电压是U,水沸腾需要通电的时间分别是t1和t2,那么每根电热丝单独通电加热时所放出的热量分别为
R串=R1+R2=R1+2R1=3+R1
由Q串=Q1,得
当两电热丝并联时
由Q并=Q1,得
所以
[答]串联时需45min,并联时需10min。
有关电热的作用例题
[例1]在电源电压不变时,为了使电炉在相等的时间内发热多些,可采取的措施是 ( )
A.增大电热丝的电阻 B.减小电热丝的电阻
C.在电热丝上并联电阻 D.在电热丝上串联电阻
[分析] 有同学认为应选(A),根据焦耳定律 Q=I2Rt,导体上放出的热量与电阻成正比,所以要增加热量,可增大电阻。这是由于对焦耳定律理解不全面的缘故.焦耳定律所阐述的导体上放出的热量和某一个量的比例关系是在其他一些量不变的条件下才成立的,如放出的热量和电阻成正比,是指电流强度和通电时间都不变的条件下热量与电阻成正比,按题意,通电时间是相同的,但由于电源电压是不变的,通过电热丝的电流强度将随着电阻的增大而减小,若再根据Q=I2Rt,将不易得出正确的结
[答]B。
[例2]如图1所示,R2=2R1,当开关S打开和闭合时,在相同的时间内,电流通过R1产生的热量之比为 ( )
A.1∶3 B.1∶9
C.3∶1 D.9∶1
[分析]电流通过R1产生的热量可根据公式Q=I2Rt或根据公式Q=W=
开关S打开时,R1,R2串联,通过Rl的电流
所以,当开关S打开和闭合时,在相同的时间内,电流通过R1产生的热量之比为
[答](B)。
[例3]有一种双温电炉,其电路图如图2所示,由两段阻值相同的电阻丝组成的发热体,A,B,C为三根引出线,其中A为低温档,B为高温档,且高温档每秒产生的热量是低温档每秒产生热量的2倍,试在方框内画出两段电阻丝的连接图,并说明设计的理由。
[分析]对纯电阻电路,电流通过导体发热.当电压恒定时,可选用Q
[答]方框内的两段电阻丝应如图3连接.
设计合理性证明如下:
当S接高温档BC时,
当S接低温档AC时,
可见设计合理。
有关电功例题
[例1]一把电烙铁接在220V的电路中,通过的电流是350mA,问通电1h消耗了多少电能?
[分析]只需求出在1h的电功,就可知道所消耗的电能。
[解]由电功的公式得
W=UIt=220V×0.35A×3600s=2.8×105J
[答]消耗电能2.8×105J。
[例2]加在导体两端的电压为6V,30s内电流通过导体做功72J,则通过导体的电流多大?这段时间内通过该导体某截面的电量是多少?
[解]由W=UIt得
[答]通过导体的电流是0.4A,通过截面的电量是12C。
[例3]有两个电阻,R1=4欧,R2=6欧,先把它们串联起来接在6伏电池组的两极间,求每分钟电流通过各个电阻所做的功和整个电路的总功,再把它们并联起来接在6伏电池组的两极间,求每分钟电流通过每个电阻所做的功和整个并联电路的总功。
[分析]在求电功时,一般根据公式W=UIt,只要我们能知道所求电路(或用电器)的I、U和t,即可应用电功公式求出W,在此题的串联电路中,时间已知,我们可利用欧姆定律求出串联电路中两电阻的电流和各自两端的电压,再代入公式求电功;而并联电路中,由于各电阻两端的电压都相等,所以只要求出各自通过的电流即可代入公式求电功。
U1=IR1=0.6安×4欧=2.4伏
U2=IR2=0.6安×6欧=3.6伏
根据电功公式W=UIt
W1=U1It=2.4伏×0.6安×60秒=86.4焦
W2=U2It=3.6伏×0.6安×60秒=129.6焦
W=UIt=6伏×0.6安×60秒=216焦
在并联电路中,U1=U2=U=6伏
W抇2=UI2t=6伏×1安×60秒=360焦
W抇=UIt=U(I1+I2)t=6伏×(1.5安+1安)×60秒=900焦
)_解题时要注意到各种电路的特点,灵活运用电功公式的变形式,可使解题过程简化,因为该例题属于纯电阻电路,我们可以应用W=I2Rt
解法2:如串联电路中求出电流后
W1=I2R1t=(0.6安)2×4欧×60秒=86.4焦
W2=I2R2t=(0.6安)2×6欧×60秒=129.6焦
W=I2Rt=I2(R1+R2)t=I2R1t+I2R2t=W1+W2=86.4焦+129.6焦=216焦
[说明]由以上运算可知,两个导体无论是串联还是并联,电流通过两个导体所做的总功都等于电流通过每个导体所做的功之和。
同样,对于若干个用电器(无论串联还是并联)电流所做的总功都等于电流通过每个用电器所做的功之和。即
W=W1+W2+…+Wn
有关电功率例题
[例1]一定阻值的电阻,接在电压为3V的电路上,消耗的功率为0.6W,求这个电阻的阻值,5min电流做功多少?
[答]这个电阻的阻值是15Ω,5min电流做的功是180J。
[例2]1kwh的电能能使一只“220V 40W”的灯泡正常工作几小时?
[答]使电灯工作25h。
[例3]某校教学大楼有教室24间,每间教室装有“PZ220-40”白炽灯6只。
(1)求引入大楼照明线中的电流;
(2)若平均每日用电3h,每月以30日计,每月耗电多少度?
[分析]可由P=UI及并联电路中I=I1+I2+……求出大楼照明线中的电流I可由W=Pt求耗电量。
[解](1)每个教室用电的功率是
P=40×6W=240W
全楼用电的总功率
P总=P×24=5.76×103W
所以
(2)全楼月耗电量
W=P总t=5.76kW×3×30h=518.4kWh=518.4(度)
[答](1)照明线中电流是26.2A;(2)每月耗电518.4度。
[例4]电阻R1,R2的阻值分别为6Ω和3Ω,现有电压为6V且保持不变的电源。(1)将两电阻串联起来接在电源两极。(2)将两电阻并联起来接在电源两极,分别求两电阻的实际功率。
[分析]电功率的计算公式有:
当两电阻串联时,只要先求出电流,用公式P=I2R就可直接求解。
[答]串联时,两电阻功率分别是2.67W,1.33W;并联时分别是6W,12W。
[例5]家用电能表盘面上标有“3000R/kWh”这一标记,能否利用这一标记与秒表测量家用电器的电功率?
[分析]“3000R/kWh”表示电能表转盘转过3000转时用电器所做的功为1kWh或3.6×106J。
[答]利用这一数据和秒表可以测量家用电器的电功率。具体做法是:在电路中断开其他电器,只留下待测电器。电器接通后,看到电能表转盘上的红点转出时,开始计时并计数转盘转过的圈数。若在t秒内转盘转过n圈,则用电器做功
[例6]一个电能表的表面上每千瓦时转数的数据已模糊不清,但电表转盘在工作时能正常转动。现要利用此表测定一家用电风扇的功率。给出的器材有:标有“220V,100W”的白炽灯一只,秒表一只。试简述测量的主要步骤和所测的数据,并写出计算电风扇功率的表达式。
[分析]不同的电器单独接在电能表上,只要转盘转过的圈数相同,则电流做功必然相等。
[答]实验步骤如下:
(1)将电能表接入照明电路中,且在此表后只接入“220V,100W”的白炽灯一盏,用秒表测出通电t秒时电能表转盘的转数n。
(2)在此表后只接入被测的电扇,记下电能表转盘转过n圈时所用的时间t'秒。
(3)由于二次转盘的转数相同,因此电流做功相同,即W=W',Pt=P't',所以电风扇的功率为
[例7]有两个电阻,R1的阻值为2欧,R2的阻值为8欧,当把它们串联起来接在某电源的两极上,R1的电功率为4瓦,若把两个电阻并联起来接在同样的电源上,这时R1的电功率和R2的电功率多大?
[分析]此题表示两个电阻先串联后并联,但两次电源电压一样,所以
[解答]解法一:在串联电路中:I=I1,根据P=I2R,有
解法二:并联时,R1的功率是100瓦,R2的功率是25瓦。
此题若采用比例的方法更显得简便。根据串联电路中各导体的电功率与它的电阻或正比,在并联电路中各导体的电功率跟它的电阻成反比。解法如下:
有关测定小灯泡的功率例题
[例1]用伏安法测定额定电压为2.5V的小灯泡的电阻和额定电功率。
(l)在未完成的电路[图1(a)]中,导线的接头M应连在滑动变阻器的____接线柱上(填:A,B,D)。
(2)闭合开关S后,电压表的示数为0.5V。要使小灯泡正常发光,应将滑动变阻器的滑片P向_移动(填:A,B)。
(3)小灯泡正常发光时,电流表的示数〔图1(b)]是____A。
(4)小灯泡正常发光时的电阻R=____Ω。
(5)小灯泡的额定功率P=____W。
[分析]伏安法测电阻、测电功率,是利用电压表、电流表分别测出待测电阻的电压U和电流I,再根据R=U/I算出电阻值,由P=IU算出电功率。本题要测小灯泡正常发光时的电阻,要求调节小灯泡的电压,因此要用到滑动变阻器。
[答](1)从图(a)中滑动变阻器的滑片所在的位置,可知导线M可以和接线柱A或B连接,但不能和C连接。
(2)要使小灯泡正常发光,应使它两端的电压从0.5V增大到2.5V,因此要增大电路的电流,采取的方法是减小滑动变阻器的电阻。如果M接在A处,这时使用的是靠近A端的电阻丝,应将滑片P向A端移动;如果M接在B处,应将滑片P向B端移动。
(3)电流表使用的是0~0.6A档,这时指针指在0.4~0.6A的中间,故示数是0.50A。也可以这样读数,这一量程每一小格(最小分度值)是0.02A,指针偏过了25格,故示数是0.02×25=0.50A。
(4)正常发光时电压U=2.5V,电流I=0.5A,故电阻R=U/I=5Ω。
(5)小灯泡的额定功率 P=IU=0. 5 × 2.5W= 1. 25W。
[说明]用电流表和电压表(即伏安法)测小灯泡的电阻和额定功率是初中电学中两个重要的学生实验。学习中应注意对这两个实验的相同之处与不同之处加以对比分析。
[例2] 在做测定小灯泡电功率的实验时,有一位同学分别设计了四个实验电路图,如图1,其中正确的是: ( )
[分析]因为该实验需要测小灯泡两端电压和通过小灯泡的电流,所以电压表要并联小灯泡两端,电流表要与小灯泡串联。滑动变阻器只有与小灯泡串联才能通过改变自身阻值来改变小灯泡两端的电压。而图(a)中两电表的位置正好接反了;图(b)中电压表测的是电路总电压;图(C)中滑动变阻器与小灯泡并联,所以正确的只有(d)。
[答](d)