以下为无格式内容概要,请点击左边“我要下载”按钮免费下载完整格式化文档
八年级物理密度练习题
一、密度的计算练习
1.某同学称量前调节天平平衡时忘记将游码归零,其余操作正确,则测量值和真实值比_____(填偏大、偏小或相等)。
2.小敏同学用天平称量物体的质量时,发现砝码已经磨损,则测量结果与真实值比较______。
3.将一铜块加热,它的质量__________,体积__________,密度____________。(填变大、变小或不变)
4.某工厂生产的酒精要求含水量不超过10%(质量百分比),用抽测密度的方法检查产品的质量,密度在____________kg/m3到___________ kg/m3范围内的为合格产品。
5.甲、乙两个物体,它们的密度之比是3:1,体积之比是2:5,甲、乙两物体质量之比是__________。如果甲截去一半,乙截去四分之一,剩下部分密度的比是____________。
6.在已知空气密度的前提下,要测量一墨水瓶中空气的质量,现有器材为天平(带砝码),水、空墨水瓶,请回答:(1)此题的关键是通过测量,测出盛满水的墨水瓶中水的_________,算出_______,从而知道瓶的容积V瓶。(2)空气质量的表达式:m空气=___________。
7.一个空瓶恰好能装下1kg的水,那它肯定也能够装下1kg的( )
A.酒精 B.豆油 C.酱油 D.汽油
8.医院里有一只氧气瓶,容积是10dm3,里面装有密度为2.5kg/m3的氧气,某次抢救病人用去了5g氧气,则瓶内剩余氧气的密度为( )
A.1kg/m3 B. 2kg/m3 C.2.2kg/m3 D. 2.5kg/m3
9.把质量相等的两种液体(密度分别为ρ1、ρ2)混合,设混合后的总体积不变,则混合液体的密度为( )
A.(ρ1+ρ2)/2 B. 2ρ1ρ2 /(ρ1+ρ2)
C. ρ1ρ2 /(ρ1+ρ2) D. ρ1ρ2
10.有质量相等的甲、乙两个实心球,甲的半径是乙的2倍,则甲球密度是乙球密度的( )
A. 1/2 B. 1/4 C. 1/8 D. 2倍
11.某金属块的质量是3.12×103kg,体积是400dm3,求这种金属的密度是多少kg/m3。
12.一辆汽车每行驶20km,耗油2.5kg,已知油箱容积是20L,问装满汽油后,可行驶多远?
13.随着人们环保意识的日益提高,节水型洁具逐渐进入百姓家庭,所谓节水型洁具,是指每冲洗一次耗水量在6L以内的洁具,某家庭新安装了一套耗水量为5L的节水型洁具,而原有的洁具每次耗水量为9L。问:(1)1000kg的水可供这套节水型洁具冲洗多少次?(2)该家庭每月可节约用水多少Kg?(设平均每天使用10次,每月以30天计)
14.体积是50cm3的铝球,它的质量是54g,问这个铝球是空心的还是实心的?若是空心的,空心部分体积为多大?(ρ铝=2.7×103kg/m3)
15.体积为30cm3的铜球的质量是89g,将它的中空部分注满某种液体后球的总质量是361g,求注入的液体密度的大小。(ρ铜=8.9×103kg/m3)
16.一只玻璃瓶的质量为100g,装满水时的总质量是600g,装满另一种液体后,总质量为500g,这种液体的密度多大?
17.一个空瓶装满水后为188g,如果在瓶内先放入79g的某金属片,然后装满水,总质量为257g,求该金属片密度。
18.一个铝制品的外表镀有一层金,测得其质量为157g,体积为52cm3,求铝和金两种金属的质量各是多少。(ρ金=19.6×103kg/m3、ρ铝=2.7×103kg/m3)
19.为测定黄河水的含沙量(每立方m含沙多少Kg)是多少,某同学取了10dm3的黄河水,称得其质量为10.18kg,试求黄河水中的含沙量。(ρ沙=2.5×103kg/m3)
20.用密度为7×103kg/m3的铸铁浇铸一个铸件,现测得这个铸件的质量是2.8kg ,体积是0.5dm3,那么这个铸件内部有无气泡?
21.一只容积为3×10-4m3的瓶内盛有0.2kg水,一只口渴的乌鸦每次将质量0.01kg的小石块投入瓶中,乌鸦投了25块相同的小石块后,水面升到瓶口,求瓶内石块的总体积和石块的密度。
22.某同学用一只玻璃杯,水和天平测一块石子的密度。他把杯子装满水后称得总质量是200g,放入石子后,将水溢出一部分以后称得总质量是215g,把石子从杯中取出,称得水和杯子的质量为190g,求石子的密度。
23.有一空瓶,装满水后总质量是32g,装满酒精后总质量是28g,求这只瓶的质量和容积是多少?(ρ酒精=0.8g/cm3)
24.一只空瓶的质量是200g,装满水后的总质量为700g,在空瓶中装一些金属,测得金属和瓶的质量为1kg,然后装满水称得总质量为1.41kg,求金属的密度?
25、用盐水选种需用密度是1.1×103kg/m3的盐水,现要配制500cm3的盐水,称得它的质量为600g,这样的盐水是否符合要求:如果不符合要求,需加盐还是加水?应该加多少?
二、密度的测量题练习
1.利用一只烧杯、水、天平、细线,如何测一小石块的密度?写出实验步骤及计算公式。
2.“正北”牌方糖是一种用细砂糖精制而成的长方体糖块,为了测定它的密度,除了一些这种糖块外还有下列器材:天平、量筒、mm刻度尺、水、白砂糖、小勺、镊子、玻璃棒。利用上述器材可以用多少种方法可以测出?写出步骤及计算公式。
3.用一架天平(带砝码)、一只空瓶和适量纯水,测定某种油的密度。
(1)应测量的物理量有__________________________________________。
(2)简要写出实验步骤,用测量出的物理量写出计算这种油密度的算式。
4.给你一台调好的天平(带砝码)和一个盛满水的烧杯,只用这些器材测出一纸包金属颗粒的密度。
要求:写出实验步骤和计算金属密度的数学表达式。
5.有一堆规格相同的小零件,每个大约几十mg,大概有上千个,你能较准确的很快数出这堆零件的个数么?(不能用数的方法)
6.给你一架天平、一瓶没有装满的牛奶、一个空奶瓶和足量的水,怎样测量牛奶的密度?写出实验步骤及计算公式。
7.给你一架天平(没有砝码)、量筒、细线、沙子、水,怎样测量小铁块的密度?
物质
实验次数
体积(cm3)
质量(g)
质量/体积(g/cm3)
甲
1
10
18
1.8
2
20
36
1.8
3
30
54
1.8
乙
4
10
8
0.8
5
20
16
0.8
6
30
24
0.8
8.为了研究物质的某种特性,某同学分别用甲、乙两种不同的液体做实验。实验时他用量筒和天平分别测出甲、乙液体在不同体积时的质量。下表记录的实验测得得数据及求得的质量跟体积的比值。
分析上表中的实验次数1与2或4与5的体积及质量变化的倍数关系,可归纳出的结论是:___________________________________________。
分析上表中实验次数__________________,可归纳出的结论是相同体积的甲、乙两种液体,它们的质量是不同的。
分析上表中甲、乙两种液体的质量与体积的比值的关系,可以归纳出的结论是:___________________________________________________________________。
计算题分类;
一、质量相等问题:
1:一块体积为100cm3的冰块熔化成水后,体积多大?
2:甲乙两矿石质量相等,甲体积是乙体积的2倍,则ρ甲=__________ρ乙。
二.体积相等问题:
1:一个瓶子能盛1Kg水,用这个瓶子能盛多少Kg酒精?
2:有一空瓶子质量是50g,装满水后称得总质量为250g,装满另一种液体称得总质量为200g,求这种液体的密度。(0.75g/cm3)
3: 某空瓶的质量为300 g,装满水后总质量为800g,若用该瓶装满某液体后总质量为850g,求瓶的容积与液体的密度。
4、一个玻璃瓶的质量是0.2Kg,玻璃瓶装满水时的总质量是0.7Kg,装满另一种液体时的总质量是0.6Kg,那么这种液体的密度是多少
5、工厂里要加工一种零件,先用木材制成零件的木模,现测得木模的质量为560g,那么要制成这样的金属零件20个需几Kg这样的金属?(木模密度为0.7×103Kg/m3,金属密度为8.9×103Kg/m3。)
6、某台拖拉机耕1m2的地需消耗柴油1.2g,若拖拉机的油箱容积为250升,问装满一箱柴油可以耕多少平方m的土地?(柴油的密度为0.85×103Kg/m3)
7、某工程师为了减轻飞机的重量,将一刚制零件改成铝制零件,使其质量减少1.56Kg,则所需铝的质量为多少?(钢的密度为7.9×103Kg/m3,铝的密度为2.7×103Kg/m3)
三.密度相等问题:
1:有一节油车,装满了30m3的石油,为了估算这节油车所装石油的质量,从中取出了30cm3石油,称得质量是24.6g, 问:这节油车所装石油质量是多少?
2:地质队员测得一块巨石的体积为20m3,现从巨石上取得20cm3的样品,测得样品的质量为52g,求这块巨石的质量。
四.判断物体是空心还是实心问题:
1、一体积为0.5dm3的铜球,其质量为2580g,,问它是空心的还是实心的?如果是空心的,空心部分体积多大?(提示:此题有三种方法解,但用比较体积的方法方便些)
2、有一质量为5.4Kg的铝球,体积是3000cm3,试求这个铝球是实心还是空心?如果是空心,则空心部分体积多大?如果给空心部分灌满水,则球的总质量是多大?(铝=2.7×103Kg/m3)
3、一个体积是0.5dm3的铁球的质量是1.58Kg,问它是否是空心的?若是空心的,在空心部分能注入多少Kg水?(铁的密度是7.9×103Kg/m3)
4、有一体积为30cm3的空心铜球,它的质量为178g,铜的=8.9g/cm3求(1)空心部分体积(2)若在空心部分装满水,求该球的总质量。
五.求长度
有铜线890Kg,铜线横截面积是25mm2,铜密度是8.9×103Kg/m3,求铜线的长度。
六.用比例解题
甲、乙两物体,质量比为3:2,体积比为4:5,求它们的密度比。
七、合金问题
1、一质量为232g的铜铝合金块,其中含铝54g,求合金的密度?(铝的密度为2.7×103Kg/m3,铜的密度为8.9×103Kg/m3)
3、为测定黄河水的含沙量,某校课外活动小组取了10dm3的黄河水,称其质量是10.18kg.已知沙子的密度沙=2.5×103kg/m3,问黄河水的含沙量是多少?(即每立方米黄河水中含沙多少Kg)