以下为幻灯片页面截图,请点击左边“我要下载”按钮免费下载无水印完整文件
用尺规作三角形
一、知识回顾
1、什么叫做三角形?
——由不在同一条直线上的三条线段,首尾顺次相接所组成的图形叫做三角形。
作法:
(1)作射线AX;
(2)用圆规在射线AX截取AB=a;
则线段AB就是所要求作的线段。
求作: ∠AOB,使 ∠AOB= ∠α 。
作法:
(1)作射线OA;
(2)以∠α的顶点为圆心,适当长为半径画弧,交∠α的两边于M、N两点;
(3)以O为圆心,同样长为半径画弧交射线OA于P;
(4)用圆规量取MN的长;以P为圆心, MN的长为半径画弧,在射线OA的同侧与前弧相交于Q;
(5)过Q作射线OB;
则∠AOB就是所要求作的角。
4、画任意△ ABC (示意图) .
作法:
(1)任作一条线段AB;
(2)线段AB的一侧取适当点C;
(3)连接AC、BC;
则△ ABC 就是所要作的三角形。
A
B
C
二、知识探索——尺规法作三角形
1、已知三边作三角形
求作: △ ABC ,使得AB=c、AC=b、BC=a;
分析:
要作三角形,那么,根据定义和条件,只要设法把三条线段首尾顺次相接即可。
于是——
作法:
(1)作线段BC=a;
(2)以C为圆心,b长为半径画弧;
(3)以B为圆心,c长为半径画弧,与前弧在射线BX的同侧相交于A;
(4)连接AB、AC;
则△ ABC 就是所要求作的三角形。
【练习】
求作:以m为边长的等边三角形。
试根据下面的作图语言完成作图:
(1)作线段AB=m,
(2)分别以A、B为圆心,m长为半径画弧,两弧在射线AX 同侧相交于C;
则△ ABC 就是所要求作的等边三角形。
(3)连接AC、BC;
2、已知两边及其夹角作三角形
求作: △ ABC 、使得BC=a、AB=c 、 ∠ABC= ∠α。
分析:
根据夹角的定义和题目所给的条件,可以想象——先确定夹角,然后再在角的边上确定三角形的边。
于是——
作法:
(1)作∠XBY= ∠α;
(2)用圆规在射线BX上截取BC=a、在射线BY上截取BA=c;
(3)连接AC;
则△ ABC 就是所要求作的三角形。
3、已知两角及其夹边作三角形
求作: △ ABC 、使得∠A = ∠α 、 ∠B = ∠β,AB=c。
分析:
根据夹边的概念和题目所给的条件,可以考虑先作出夹边,然后再以夹边的端点作为角的顶点进一步确定两个角。
作法:
(1)作线段AB=c;
(2)在线段AB的同侧作∠BAX= ∠α , ∠ ABY= ∠β,两边相交于C;
则△ ABC 就是所要求作的三角形。
课堂小结:
通过这堂课的学习,你有哪些收获和感受?课后与同学们交流。
作业: